Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz Pardo, Ruth Yolanda
dc.contributor.advisorGonzález Rodríguez, Leonardo José
dc.contributor.authorSánchez Torres, José Alcides
dc.date.accessioned2014-05-30T14:34:51Z
dc.date.available2014-05-30T14:34:51Z
dc.date.created2014-05-30
dc.date.issued2014
dc.identifier.citationAbbaszaadeh, A., Ghobadian, B., Omidkhah, M. R., & Najafi, G. (2012). Current biodiesel production technologies: A comparative review. Energy Conversion and Management, 63, 138–148. doi:10.1016/j.enconman.2012.02.027
dc.identifier.citationAbd Rabu, R., Janajreh, I., & Honnery, D. (2013). Transesterification of waste cooking oil: Process optimization and conversion rate evaluation. Energy Conversion and Management, 65, 764–769. doi:10.1016/j.enconman.2012.02.031
dc.identifier.citationAbuhabaya, A., Fieldhouse, J., & Brown, D. (2013a). Influence of production variables for biodiesel synthesis on yields and fuel properties, and optimization of production conditions. Fuel, 103, 963–969. doi:10.1016/j.fuel.2012.09.067
dc.identifier.citationAbuhabaya, A., Fieldhouse, J., & Brown, D. (2013b). The optimization of biodiesel production by using response surface methodology and its effect on compression ignition engine. Fuel Processing Technology, 113, 57–62. doi:10.1016/j.fuproc.2013.03.025
dc.identifier.citationAgarwal, M., Singh, K., Upadhyaya, S., & Chaurasia, S. P. (2011). Effect of Reaction Parameters on Yield and Characteristics of Biodiesel Obtained from Various Vegetable Oils. www.conference.Net.Au/Chemeca.
dc.identifier.citationAkgün, N., & Dere, G. (2007). Evaluation Of Biodiesel Production Using Experimental, (212), 259–267.
dc.identifier.citationAkgün, N., & İşcan, E. (2007). Effects of process variables for biodiesel production by transesterification. European Journal of Lipid Science and Technology, 109(5), 486– 492. doi:10.1002/ejlt.200600210
dc.identifier.citationAkhihiero, E. T., Oghenejoboh, K. M., & Umukoro, P. O. (2013). Effects of Process Variables on Transesterification Reaction of Jatropha Curcas Seed Oil for the Production of Biodiesel, 3(6), 388–393.
dc.identifier.citationAldape, A., Valles, A., Velasquez, S., & Soto, L. (2010). Aplicación del Meta-Análisis en la Ingeniería. In Congreso Internacional de Investigación de Academia Journals.com (p. Volimen IV pag 3–10).
dc.identifier.citationAlsoudy, A., Thomsen, M. H., & Janajreh, I. (2012). Influence On Process Parameters In Transesterification Of Vegetable And Waste Oil – A Review. International Journal of Research and Reviews in Applied Sciences, 10(January), 64–77.
dc.identifier.citationAnya, A. U., Chioma, N. N., & Obinna, O. (2012). Optimized Reduction Of Free Fatty Acid Content On Neem Seed Oil , For Biodiesel Production, 2(4), 21–28.
dc.identifier.citationAtadashi, I. M., Aroua, M. K., Abdul Aziz, a. R., & Sulaiman, N. M. N. (2012). The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 16(5), 3456–3470. doi:10.1016/j.rser.2012.03.004
dc.identifier.citationAtadashi, I. M., Aroua, M. K., Abdul Aziz, a. R., & Sulaiman, N. M. N. (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19(1), 14–26. doi:10.1016/j.jiec.2012.07.009
dc.identifier.citationAtapour, M., Kariminia, H.-R., & Moslehabadi, P. M. (2013). Optimization of biodiesel production by alkali-catalyzed transesterification of used frying oil. Process Safety and Environmental Protection, (November 2011), 1–7. doi:10.1016/j.psep.2012.12.005
dc.identifier.citationAwad, S., Basa, I., Paraschiv, M., Kumar, S., & Tazerout, M. (2010). Characterisation And Optimisation Of Biodiesel ’ S Production From Waste Cooking Oil. U.P.P. Sciencies Bulletin. Series C, Vol 72, 72, 3–12.
dc.identifier.citationAyoola, A., Hymore, F., Obande, M., & Ifeoma, U. (2012). Optimization of Experimental Conditions for Biodiesel Production. International Journal of Engineering & Technology, 12(06), 130–133.
dc.identifier.citationBanerjee, a., & Chakraborty, R. (2009). Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review. Resources, Conservation and Recycling, 53(9), 490–497. doi:10.1016/j.resconrec.2009.04.003
dc.identifier.citationBautista, L. F., Vicente, G., Rodríguez, R., & Pacheco, M. (2009). Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass and Bioenergy, 33(5), 862–872. doi:10.1016/j.biombioe.2009.01.009
dc.identifier.citationBerrios, M., Gutiérrez, M. C., Martín, M. a., & Martín, a. (2010). Obtaining biodiesel from spanish used frying oil: Issues in meeting the EN 14214 biodiesel standard. Biomass and Bioenergy, 34(3), 312–318. doi:10.1016/j.biombioe.2009.11.002
dc.identifier.citationBetiku, E., & Adepoju, T. F. (2013). Methanolysis optimization of sesame (Sesamum indicum) oil to biodiesel and fuel quality characterization. International Journal of Energy and Environmental Engineering, 4(1), 9. doi:10.1186/2251-6832-4-9
dc.identifier.citationBoonmee, K., Chuntranuluck, S., Punsuvon, V., & Silayoi, P. (2010). Optimization of Biodiesel Production from Jatropha Oil ( Jatropha curcas L .) using Response Surface Methodology, 299, 290–299.
dc.identifier.citationBorges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. doi:10.1016/j.rser.2012.01.071
dc.identifier.citationBorugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763– 4784. doi:10.1016/j.rser.2012.04.010
dc.identifier.citationCanakci, M., & Van Gerpen, J. (2001). A Pilot Plant to Produce Biodiesel from High Free Fatty Acid Feedstocks. American Society of Agricultural Engineers, 46(4), 945–954.
dc.identifier.citationÇaylı, G., & Küsefoğlu, S. (2008). Increased yields in biodiesel production from used cooking oils by a two step process: Comparison with one step process by using TGA. Fuel Processing Technology, 89(2), 118–122. doi:10.1016/j.fuproc.2007.06.020
dc.identifier.citationCerveró, J. M., Coca, J., & Luque, S. (2008). Production of biodiesel from vegetable oils. Grasas y Aceites, 59(1), 76–83. doi:10.3989/gya.2008.v59.i1.494
dc.identifier.citationCharoenchaitrakool, M., & Thienmethangkoon, J. (2011). Statistical optimization for biodiesel production from waste frying oil through two-step catalyzed process. Fuel Processing Technology, 92(1), 112–118. doi:10.1016/j.fuproc.2010.09.012
dc.identifier.citationChhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies, 1(1), 3–18. doi:10.3390/en1010003
dc.identifier.citationCvengroš, J., & Cvengrošová, Z. (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass and Bioenergy, 27(2), 173–181. doi:10.1016/j.biombioe.2003.11.006
dc.identifier.citationDemirbas, A. (2002). Biodiesel from vegetable oils via transesterification in supercritical methanol, 43, 2349–2356.
dc.identifier.citationDemirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and noncatalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31(5-6), 466–487. doi:10.1016/j.pecs.2005.09.001
dc.identifier.citationDias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2008). Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel, 87(17-18), 3572–3578. doi:10.1016/j.fuel.2008.06.014
dc.identifier.citationDias, J. M., Alvim-Ferraz, M. C. M., & Almeida, M. F. (2009). Production of biodiesel from acid waste lard. Bioresource technology, 100(24), 6355–61. doi:10.1016/j.biortech.2009.07.025
dc.identifier.citationDias, J. M., Ferraz, C. A., & Almeida, M. F. (2008). Using Mixtures of Waste Frying Oil and Pork Lard to produce Biodiesel, 258–262.
dc.identifier.citationEl Boulifi, N., Bouaid, a., Martinez, M., & Aracil, J. (2010). Process Optimization for Biodiesel Production from Corn Oil and Its Oxidative Stability. International Journal of Chemical Engineering. doi:10.1155/2010/518070
dc.identifier.citationEncinar, J. M., González, J. F., & Rodríguez-Reinares, A. (2005). Biodiesel from Used Frying Oil. Variables Affecting the Yields and Characteristics of the Biodiesel. Industrial & Engineering Chemistry Research, 44(15), 5491–5499. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ie040214f
dc.identifier.citationEnweremadu, C. C., & Mbarawa, M. M. (2009). Technical aspects of production and analysis of biodiesel from used cooking oil—A review. Renewable and Sustainable Energy Reviews, 13(9), 2205–2224. Doi:10.1016/J.Rser.2009.06.007
dc.identifier.citationFan, X. (2008). Oil And Waste Vegetable Oil : Conventional And Ultrasonic By.
dc.identifier.citationFelizardo, P., Correia, M. J. N., Raposo, I., Mendes, J. F., Berkemeier, R., & Bordado, J. M. (2006). Production of biodiesel from waste frying oils. Waste management (New York, N.Y.), 26(5), 487–94. doi:10.1016/j.wasman.2005.02.025
dc.identifier.citationFernández Melcón, C. D., & Piñeiro Barcia, M. (n.d.). Superficies de respuesta. Métodos y diseño.
dc.identifier.citationFreedman, B., Pryde, E. H., Mounts, T. L., & Regional, N. (1984). , Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils 1, 61(10), 1638–1643.
dc.identifier.citationGnanaprakasam, A., Sivakumar, V. M., Surendhar, A., Thirumarimurugan, M., & Kannadasan, T. (2013). Recent Strategy of Biodiesel Production from Waste Cooking Oil and Process Influencing Parameters: A Review. Journal of Energy, 2013, 1–10. doi:10.1155/2013/926392
dc.identifier.citationGoyal, P., Sharma, M. P., & Jain, S. (2012). Optimization of Esterification and Transesterification of High FFA Jatropha Curcas Oil Using Response Surface Methodology. Journal of Petroleum Science Research, 1(3), 36–43.
dc.identifier.citationGuerrero, C. A., Guerrero-romero, A., & Sierra, F. E. (2010). Biodiesel Production from Waste Cooking Oil. In Biodiesel (pp. 23–44).
dc.identifier.citationGuerrero, C., Parra, J., & Sierra, F. (2013). Optimization Of Biodiesel Production Process For Homogeneous Catalysis From Used Cooking Oil, (11).
dc.identifier.citationGuerrero P, A., Anguebes, F., Cordoba., V., & Rovira G., I. (2010). Aceite vegetal usado como recurso renovable para la síntesis de biodiesel. Ingenieria Quimica, 506, 70–74.
dc.identifier.citationGuo, Y. (2005). Alkaline-catalyzed production of biodiesel fuel from virgin canola oil and recycled waste oils. The University of Hong Kong, Pokfulam Road, Hong Kong SAR. Retrieved from http://hdl.handle.net/10722/41413
dc.identifier.citationHirkude, J., Padalkar, A., Shaikh, S., & Veigas, A. (2013). Effect of Compression Ratio on Performance of CI Engine Fuelled with Biodiesel from Waste Fried Oil Using Response Surface Methodology. International Journal of Energy Engineering, 3(5), 227–233. doi:10.5923/j.ijee.20130305.01
dc.identifier.citationHoque, M. E., Singh, A., & Chuan, Y. L. (2011). Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 35(4), 1582–1587. doi:10.1016/j.biombioe.2010.12.024
dc.identifier.citationHossain, A. B. M. S., & Al-Saif, A. . (2010). Biodiesel fuel production from soybean oil waste as agricultural bio-resource Butanol Ethanol Methanol Different alcohol. Australian Journal of Crop Science, 4(7), 538–542.
dc.identifier.citationHossain, A. B. M. S., & Boyce, A. N. (2009). Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy. Bulgarian Journal of Agricultural Science, 15(4), 312–317.
dc.identifier.citationHossain, A. B. M. S., Boyce, A. N., Salleh, A., & Chandran, S. (2010). Impacts of alcohol type , ratio and stirring time on the biodiesel production from waste canola oil. African Journal of Agricultural Research, 5(14), 1851–1859. doi:10.5897/AJAR09.135
dc.identifier.citationHossain, A. B. M. S., & Mazen, M. A. (2010). Effects of catalyst types and concentrations on biodiesel production from waste soybean oil biomass as renewable energy and environmental recycling process. Australian Journal of Crop Science, 4(7), 550–555.
dc.identifier.citationHossain, A. B. M. S., & Mekhled, M. A. (2010). Biodiesel fuel production from waste canola cooking oil as sustainable energy and environmental recycling process. Australian Journal of Crop Science, 4(7), 543–549.
dc.identifier.citationIssariyakul, T., Kulkarni, M. G., Meher, L. C., Dalai, A. K., & Bakhshi, N. N. (2008). Biodiesel production from mixtures of canola oil and used cooking oil. Chemical Engineering Journal, 140(1-3), 77–85. doi:10.1016/j.cej.2007.09.008
dc.identifier.citationJain, S., Sharma, M. P., & Rajvanshi, S. (2011). Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Processing Technology, 92(1), 32–38. doi:10.1016/j.fuproc.2010.08.017
dc.identifier.citationJazie, A. A., Sinha, A. S. K., & Pramanik, H. (2011). Optimization Of Biodiesel Production From Peanut And Rapeseed Oils Using Response Surface Methodology. International Journal of Biomass & renewables, 9–18.
dc.identifier.citationJeong, G.-T., & Park, D.-H. (2009). Optimization of Biodiesel Production from Castor Oil using Responde Surface Methodology. Applied Biochemistry and Biotechnology, (156), 431–441.
dc.identifier.citationJeong, G.-T., Yang, H.-S., & Park, D.-H. (2009). Optimization of transesterification of animal fat ester using response surface methodology. Bioresource technology, 100(1), 25–30. doi:10.1016/j.biortech.2008.05.011
dc.identifier.citationKarabas, H. (2010). Optimization of the Parameters Affecting on the Conversion Rate of the Used Frying Oil. Akademik Platform, 672–678.
dc.identifier.citationKarnwal, A., Kumar, N., Hasan, M. M., Chaudhary, R., Siddiquee, A. N., & Khan, Z. A. (2010). Production of Biodiesel from Thumba Oil : Optimization of Process Parameters, 1(4), 352–358.
dc.identifier.citationKasim, F. H., & Harvey, A. P. (2011). Influence of various parameters on reactive extraction of Jatropha curcas L. for biodiesel production. Chemical Engineering Journal, 171(3), 1373–1378. doi:10.1016/j.cej.2011.05.050
dc.identifier.citationKeera, S. T., El Sabagh, S. M., & Taman, a. R. (2011). Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst. Fuel, 90(1), 42–47. doi:10.1016/j.fuel.2010.07.046
dc.identifier.citationKiar, L. P., Skovgaard, I. M., & Ostergard, H. (2009). Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crops Research, 114(3), 361–373. doi:10.1016/j.fcr.2009.09.006
dc.identifier.citationKılıç, M., Uzun, B. B., Pütün, E., & Pütün, A. E. (2013). Optimization of biodiesel production from castor oil using factorial design. Fuel Processing Technology, 111, 105–110. doi:10.1016/j.fuproc.2012.05.032
dc.identifier.citationKraemer Wermelinger, V., Araujo, S., Hamacher, S., & Scavarda, L. F. (2010). Economic assessment of biodiesel production from waste frying oils. Bioresource technology, 101(12), 4415–22. doi:10.1016/j.biortech.2010.01.101
dc.identifier.citationKrishnan, D., & Dass, D. M. (2012). A kinetic study of biodiesel in waste cooking oil. African Journal of Biotechnology, 11(41), 9797–9804. doi:10.5897/AJB12.507
dc.identifier.citationKumaran, P., Mazlini, N., Hussein, I., Nazrain, M., & Khairul, M. (2011). Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel. Energy, 36(3), 1386–1393. doi:10.1016/j.energy.2011.02.002
dc.identifier.citationLam, M. K., & Lee, K. T. (2011). Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO42−/SnO2–SiO2 catalyst. Fuel Processing Technology, 92(8), 1639–1645. doi:10.1016/j.fuproc.2011.04.012
dc.identifier.citationLam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology advances, 28(4), 500–18. doi:10.1016/j.biotechadv.2010.03.002
dc.identifier.citationLee, H. V., Yunus, R., Juan, J. C., & Taufiq-Yap, Y. H. (2011). Process optimization design for jatropha-based biodiesel production using response surface methodology. Fuel Processing Technology, 92(12), 2420–2428. doi:10.1016/j.fuproc.2011.08.018
dc.identifier.citationLegates, D., & McCabe, G. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.
dc.identifier.citationLei, X., Peng, C., Tian, D., & SUN, J. (2007). Meta-analisis & application global change research china 2007. Chinese Science Bulletin, 52(3), 289–302.
dc.identifier.citationLenth, R. V. (2009). Response-Surface Methods in R , Using rsm. Journal of Statistical Software, 32(7).
dc.identifier.citationLeung, D. Y. C., & Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 87(10), 883–890. doi:10.1016/j.fuproc.2006.06.003
dc.identifier.citationLi, J., Fu, Y.-J., Qu, X.-J., Wang, W., Luo, M., Zhao, C.-J., & Zu, Y.-G. (2012). Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresource technology, 108, 112–8. doi:10.1016/j.biortech.2011.12.129
dc.identifier.citationLiao, C.-C., & Chung, T.-W. (2011). Analysis of parameters and interaction between parameters of the microwave-assisted continuous transesterification process of Jatropha oil using response surface methodology. Chemical Engineering Research and Design, 89(12), 2575–2581. doi:10.1016/j.cherd.2011.06.002
dc.identifier.citationLonglong, M. A., Pengmei, L. U., Lianhua, L. I., Wen, L. U. O., & Xiaoying, K. (2008). Biodiesel Production from different Feedstocks in Pilot Scale System. iodiesel Production from different Feedstocks in Pilot Scale System, October(Special), 16–21.
dc.identifier.citationMa, F., & Hanna, M. A. (1999). Biodiesel production : a review 1. Biosource Technology, 70, 1–15.
dc.identifier.citationMa, F., L.D., C., & Milford, H. (1998). The Effects of Catalyst , Free Fatty Acids , and Water on Transecterification of Beef Tallow. DigitalCommons@University of Nebraska - Lincoln, 1(1)
dc.identifier.citationManso, M. E., Cruz-lemus, J. A., Genero, M., & Piattini, M. (2008). Uso de Meta-Análisis para Integrar Resultados Experimentales Técnicas Estadísticas para Sintetizar Experimentos. In Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos (Vol. 2, pp. 37–47).
dc.identifier.citationMansourpoor, M., & Shariati, A. (2012). Optimization of Biodiesel Production from Sunflower Oil Using Response Surface Methodology. Journal of Chemical Engineering & Process Technology, 03(05), 3–7. doi:10.4172/2157-7048.1000141
dc.identifier.citationMarchetti, J. M. (2012). A summary of the available technologies for biodiesel production based on a comparison of different feedstock’s properties. Process Safety and Environmental Protection, 90(3), 157–163. doi:10.1016/j.psep.2011.06.010
dc.identifier.citationMartínez B., R., & Martínez R., N. (1997). Diseño De Experimentos. (F. N. Universitario, Ed.) (Primera., p. 479).
dc.identifier.citationMath, M. C., Kumar, S. P., & Chetty, S. V. (2010). Technologies for biodiesel production from used cooking oil — A review. Energy for Sustainable Development, 14(4), 339– 345. doi:10.1016/j.esd.2010.08.001
dc.identifier.citationMathiyazhagan, M., & Ganapathi, A. (2011). Factors Affecting Biodiesel Production. Research in Plant Biology, 1(2), 1–5.
dc.identifier.citationMatloff, N. (2009). The Art of R Programming.
dc.identifier.citationMeher, L. C., Dharmagadda, V. S. S., & Naik, S. N. (2006). Optimization of alkalicatalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource technology, 97(12), 1392–1397. doi:10.1016/j.biortech.2005.07.003
dc.identifier.citationMeher, L., Vidyasagar, D., & Naik, S. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. doi:10.1016/j.rser.2004.09.002
dc.identifier.citationMeng, X., Chen, G., & Wang, Y. (2008). Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Processing Technology, 89(9), 851–857. doi:10.1016/j.fuproc.2008.02.006
dc.identifier.citationMoriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900.
dc.identifier.citationNurfitri, I., Maniam, G. P., Hindryawati, N., Yusoff, M. M., & Ganesan, S. (2013). Potential of feedstock and catalysts from waste in biodiesel preparation: A review. Energy Conversion and Management, 74, 395–402. doi:10.1016/j.enconman.2013.04.042
dc.identifier.citationOliveira Santos, O., Maruyama, S. A., Claus, T., de Souza, N. E., Matsushita, M., & Visentainer, J. V. (2013). A novel response surface methodology optimization of basecatalyzed soybean oil methanolysis. Fuel, 113, 580–585. doi:10.1016/j.fuel.2013.06.011
dc.identifier.citationOrozco, A. M. (2009). Instrumentos para modernizar la comercialización en la cadena de valor del aceite de palma. In Congreso Nacional de Cultivadores d Palma de Aceite - Revista Palmas (Vol. 30, pp. 115–127).
dc.identifier.citationParida, S., Misra, S., & Sahu, D. K. (2011). Development of Process Technology to Produce Low Cost Biofuel I - Minimization of Operating Parameters during Preparation of Biodiesel. In World Renewable Energy Congress - Sweden (p. 7).
dc.identifier.citationPatil, P. D., & Deng, S. (2009). Optimization of biodiesel production from edible and nonedible vegetable oils. Fuel, 88(7), 1302–1306. doi:10.1016/j.fuel.2009.01.016
dc.identifier.citationPhan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17-18), 3490–3496. doi:10.1016/j.fuel.2008.07.008
dc.identifier.citationPiña, M. C. M. R., Rodríguez, M. A., & Benavides, E. M. (2006). Metodología robusta para superficies de respuestas. Cultura Científica y Tecnológica, (12), 32–45.
dc.identifier.citationPredojevic, Z., & Skrbic, B. (2009). Alkali-catalyzed production of biodiesel from waste frying oils. Journal of the Serbian Chemical Society, 74(8-9), 993–1007. doi:10.2298/JSC0909993P
dc.identifier.citationRamachandran, K., Suganya, T., Nagendra Gandhi, N., & Renganathan, S. (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable and Sustainable Energy Reviews, 22, 410–418. doi:10.1016/j.rser.2013.01.057
dc.identifier.citationRamos, T. R. P., Gomes, M. I., & Barbosa-Póvoa, A. P. (2013). Planning waste cooking oil collection systems. Waste management (New York, N.Y.), 33(8), 1691–703. doi:10.1016/j.wasman.2013.04.005
dc.identifier.citationRashid, U, & Anwar, F. (2008). Production of biodiesel through optimized alkalinecatalyzed transesterification of rapeseed oil. Fuel, 87(3), 265–273. doi:10.1016/j.fuel.2007.05.003
dc.identifier.citationRashid, Umer, Anwar, F., & Arif, M. (2009). Optimization of Base Catalytic Methanolysis of Sunflower ( Helianthus annuus ) Seed Oil for Biodiesel Production by Using Response Surface Methodology. Industrial & Engineering Chemistry Research, 48(4), 1719–1726. doi:10.1021/ie801136h
dc.identifier.citationRazali, N., Mootabadi, H., Salamantina, B., Lee, K. T., & Abdullah, A. . (2010). Optimization of Process Parameters for Alkaline-Catalysed Transesterification of Palm Oil Using Response Surface Methodology. Sains Malaysiana, 39(5), 805–809.
dc.identifier.citationRefaat, a. a. (2010). Different techniques for the production of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Tech., 7(1), 183–213. Retrieved from http://www.ijest.org/jufile?c2hvd1BERj0zODk=
dc.identifier.citationRefaat, A. A., Attia, N. K., Sibak, H. A., Sheltawy, S. T. El, & Eldiwani, G. I. (2008). Production optimization and quality assessment of biodiesel from waste vegetable oil, 5(1), 75–82.
dc.identifier.citationRitter, A., & Muñoz-carpena, R. (2013). Performance evaluation of hydrological models : Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. doi:10.1016/j.jhydrol.2012.12.004
dc.identifier.citationSantos, F. F. P., Rodrigues, S., & Fernandes, F. a. N. (2009). Optimization of the production of biodiesel from soybean oil by ultrasound assisted methanolysis. Fuel Processing Technology, 90(2), 312–316. doi:10.1016/j.fuproc.2008.09.010
dc.identifier.citationSavaliya, M. L., Patel, J. R., & Dholakiya, B. Z. (2013). International Journal of Chemical Studies A Concise Review on Acid , Alkali and Enzyme Catalyzed Transesterification of Fatty Acid Esters of Glycerol ( FAEG ) to Fatty Acid Methyl Ester ( FAME ) Fuel, 1(3), 5–19
dc.identifier.citationShahid, E. M., & Jamal, Y. (2011). Production of biodiesel: A technical review. Renewable and Sustainable Energy Reviews, 15(9), 4732–4745. doi:10.1016/j.rser.2011.07.079
dc.identifier.citationSingh, A., He, B., Thompson, J., & Van Gerpen, J. (2006). Process Optimization of Biodiesel Production using Alkaline Catalyst. Applied Engineering in Agriculture, 22(4), 597–600.
dc.identifier.citationSivasamy, A., Cheah, K. Y., Fornasiero, P., Kemausuor, F., Zinoviev, S., & Miertus, S. (2009). Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem, 2(4), 278–300. doi:10.1002/cssc.200800253
dc.identifier.citationThamsiriroj, T., & Murphy, J. D. (2010). How much of the target for biofuels can be met by biodiesel generated from residues in Ireland? Fuel, 89(11), 3579–3589. doi:10.1016/j.fuel.2010.06.009
dc.identifier.citationThirumarimurugan, M., Sivakumar, V. M., Xavier, a. M., Prabhakaran, D., & Kannadasan, T. (2012). Preparation of Biodiesel from Sunflower Oil by Transesterification. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), 441–444. doi:10.7763/IJBBB.2012.V2.151
dc.identifier.citationTomasevic, a. V., & Siler-Marinkovic, S. S. (2003). Methanolysis of used frying oil. Fuel Processing Technology, 81(1), 1–6. doi:10.1016/S0378-3820(02)00096-6
dc.identifier.citationUzun, B. B., Kılıç, M., Özbay, N., Pütün, A. E., & Pütün, E. (2012). Biodiesel production from waste frying oils: Optimization of reaction parameters and determination of fuel properties. Energy, 44(1), 347–351. doi:10.1016/j.energy.2012.06.024
dc.identifier.citationVicente, G., Martínez, M., & Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource technology, 92(3), 297–305. doi:10.1016/j.biortech.2003.08.014
dc.identifier.citationVicente, G., Martínez, M., & Aracil, J. (2007a). Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresource technology, 98(9), 1724–33. doi:10.1016/j.biortech.2006.07.024
dc.identifier.citationVicente, G., Martínez, M., & Aracil, J. (2007b). Optimisation of integrated biodiesel production. Part II: a study of the material balance. Bioresource technology, 98(9), 1754–61. doi:10.1016/j.biortech.2006.07.023
dc.identifier.citationWaseem, Muhammad, Adnan, A., Anwar, F., Mukhtar, H., Raza, M. A., Ahmad, F., & Rashid, U. (2012). Response Surface Methodology: An Emphatic Tool for Optimized Biodiesel Production Using Rice Bran and Sunflower Oils. Energies, 5(12), 3307– 3328. doi:10.3390/en5093307
dc.identifier.citationWaseem, Muhammad, Adnan, A., Mahmood, Z., Mukhtar, H., Danish, M., & Ahmad, Z. (2012). Biodiesel production using Eruca Sativa Oil: Optimization and Characterization. Pakistan journal of botany, 44(3), 1111–1120.
dc.identifier.citationYuan, X., Liu, J., Zeng, G., Shi, J., Tong, J., & Huang, G. (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renewable Energy, 33(7), 1678–1684. doi:10.1016/j.renene.2007.09.007
dc.identifier.citationYusuf, N. N. a. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Conversion and Management, 52(7), 2741–2751. doi:10.1016/j.enconman.2010.12.004
dc.identifier.citationYusup, S., & Khan, M. A. (2010). Base catalyzed transesterification of acid treated vegetable oil blend for biodiesel production. Biomass and Bioenergy, 34(10), 1500– 1504. doi:10.1016/j.biombioe.2010.04.027
dc.identifier.citationZhang, Y., Dubé, M. ., McLean, D. ., & Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology, 90(3), 229–240. doi:10.1016/S0960-8524(03)00150-0
dc.identifier.urihttp://hdl.handle.net/10818/10780
dc.description270 páginas
dc.description.abstractUtilizando la metodología del Meta-análisis, se realizó el análisis y la combinación de resultados de estudios independientes con el fin de obtener modelos que establecen la relación entre parámetros de proceso y rendimiento de Biodiesel a partir de aceites de cocina usados, utilizando un catalizador básico (KOH o NaOH) y metanol. El rendimiento máximo (95,1 %) obtenido con el modelo, con catalizador hidróxido de Potasio, corresponde a la Concentración de Catalizador (%peso): 0,88; Relación Molar alcohol–aceite: 7,6 y Temperatura de reacción (º C): 50,6. El rendimiento máximo (89,7 %) con catalizador hidróxido de Sodio corresponde a la Concentración de Catalizador (%peso): 1,14; Relación Molar alcohol–aceite: 8:1; Temperatura de reacción (º C): 61,9; Tiempo de Reacción (minutos): 52,5. En ambos casos la ecuación cuadrática es la que mejor se ajusta y los coeficientes de las variables que tienen mayor significancia en el modelo son los términos cuadráticos de la Concentración y la Relación Molar Alcohol-Aceite. También se encontró que es necesario profundizar en el efecto de la composición y la concentración de los ácidos grasos (saturados e insaturados) de la materia prima, para explicar las diferencias entre estudios, que han sido realizados en condiciones similares pero que reportan resultados diferentes.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectMotores diesel -- Combustibles alternativos -- Colombia
dc.subjectBiodiesel -- Colombia
dc.subjectCombustibles para motores -- Colombia
dc.titleDeterminación de la relación entre parámetros de proceso y rendimiento de obtención de biodiesel a partir de aceites de cocina usados, con base en meta-análisises_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local259373
dc.identifier.localTE06504
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem