Show simple item record

dc.contributor.advisorSotelo Díaz, Luz Indira
dc.contributor.advisorCueto Vigil, María Clementina
dc.contributor.authorRodríguez Agudelo, Natalia
dc.date.accessioned2014-04-23T13:51:17Z
dc.date.available2014-04-23T13:51:17Z
dc.date.created2013
dc.date.issued2013
dc.identifier.citationAlba. M., Bravo. D., Medina. M. 2013. Inactivation of Escherichia coli O157:H7 in drycured ham by high-pressure treatments combined with biopreservatives. Food Control 31. 508 - 513
dc.identifier.citationAlves. V.F, Martínez. R.C.R, Lavrador. M.A.S, De Martinis E.C.P. 2006. Antilisterial activity of lactic acid bacteria inoculated on cooked ham. Meat Science 74. 623-627.
dc.identifier.citationAmezquita, A., Brashears, M.M., 2002. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. Journal of Food Protection 65 (2), 316– 325.
dc.identifier.citationAmos, N. D., Willix, J., Chadertton, T., North, M.F. 2008. A compilation of correlation parameters for predicting the enthalpy and thermal conductivity of solid foods within the temperature range of -40 °C to 40 °C. International Journal of Refrigeration 31. 1293 – 1298.
dc.identifier.citationAnanou. S., Baños. A., Maqueda. M., Martínez-Bueno. M., Gálvez. A., Valdivia. E. 2010. Effect of combined physico-chemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 21. 478–486.
dc.identifier.citationAndersen, L. 1995. Biopreservation with FloraCarn L-2. Fleisch- wirtschaft, 75, 705– 706, 711–712.
dc.identifier.citationAndersen, L. 1997. Bioprotective culture for fresh sausage. Fleisch- wirtschaft, 77, 635–637.
dc.identifier.citationAntwi. M, Bernaerts. K, Van Impe. J.F, Geeraerd. A.H. 2007. Modelling the combined effects of structured food model system and lactic acid on Listeria innocua and Lactococcus lactis growth in mono and co-culture. International Journal of Food Microbiology 120. 71-84.
dc.identifier.citationAntwi. M, Theys. T.E, Bernaerts. K, Van Impe. J.F, Geeraerd. A.H. 2008. Validation of a model for growth of Lactococcus lactis and Listeria innocua in a structured gel system: Effect of monopotassium phosphate. International Journal of Food Microbiology 128. 320-329.
dc.identifier.citationAssociation of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th Edition. Pp 1298.
dc.identifier.citationBaranyi, J. & Roberts, T.A. 1994. A dynamic approach to predict bacterial growth in food. International Journal of Food Microbiology, 23, 277-294.
dc.identifier.citationBadui, S. 1981. Química de los alimentos. Universidad Nacional Autónoma de México. Ed. Alhambra Mexicana S.A. México. pp 430.
dc.identifier.citationBredholt. S, Nesbakken. T, Holck. A. 1999. Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum and gas packaged meat. International Journal of Food Microbiology 53. 43 -52.
dc.identifier.citationBredholt. S, Nesbakken. T, Holck. A. 2001. Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. International Journal of Food Microbiology 66. 191-196.
dc.identifier.citationBjorkroth, J., Korkeala, H. 1997. Ropy slime-producing Lactobacillus sake strains possess a strong competitive ability against a commercial biopreservatives. International Journal of Food Microbiology. 38. 117 – 123.
dc.identifier.citationCarr, F.J., Chill, D. y Maida, N. 2002. The lactic acid bacteria: a literature survey. Critical Reviews in Microbiology, 28(4), 281-370.
dc.identifier.citationCastro. M.P, Palavecino. N.Z., C. Herman, Garro. O.A, Campos. C.A. 2011. Lactic acid bacteria isolated from artisanal dry sausages: Characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Meet Science, 87, 321-329.
dc.identifier.citationChaves-López. C, Paparella. A, Tofalo. R, Suzzi. G. 2011. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system. International Journal of Food Microbiology 150. 50-58.
dc.identifier.citationCizeikiene. D, Juodeikiene. G, Paskevicius. A, Bartkiene. E. 2013. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control 31. 539 – 545.
dc.identifier.citationFDA. 2012. Bad Bug Book - Foodborne Pathogenic Microorganisms and Natural Toxins
dc.identifier.citationGirard, J. P. 1991. Tecnología de la carne y de los productos cárnicos. Ed. Acribia S.A. Zaragoza – España. pp 300.
dc.identifier.citationGonzález, B., Díez, V. 2002. The effect of nitrite and starter culture on microbiological quality of “chorizo”—a Spanish dry cured sausage. Meat Science. 60. 295 – 298.
dc.identifier.citationGonzález, M., Suarez, H., Martínez, O. 2009. Análisis estructural de la carne de jamón durante el proceso de cocción y temperatura de almacenamiento. Revista MVZ Córdoba. 14 (3). 1803 – 1811.
dc.identifier.citationGonzález, M., Suarez, H., Martínez, O. 2010. Influencia del Proceso de Cocción y Temperatura de Almacenamiento Sobre las Características Fisicoquímicas, Microbiológicas y Sensoriales del Jamón de Cerdo. Revista Colombiana Ciencias Pecuarias. 23 (3) pp. 336-348.
dc.identifier.citationHolzapfel. W.H, Geisen. R, Schillinger. U. 1995. Biological preservation of foods with reference to protective cultures, bacteriocinas and food-grade enzymes. International Journal of Food Microbiology 24. 343 – 362
dc.identifier.citationHonikel, K. 2008. The use and control of nitrate and nitrite for the processing of meat products. Meat Science. 78. 68 – 76.
dc.identifier.citationHorita. C.N, Morgano. M.A, Celeghini. R.M.S, Pollonio. M.A.R. 2011. Physicochemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Science 89. 426-423.
dc.identifier.citationHu. P, Xu. X.L, Zhou. G.H, Han. Y.Q, Xu. B.C, Liu. J.C. 2008. Study of the Lactobacillus sakei protective effect towards spoilage bacteria in vacuum packed cooked ham analyzed by PCR–DGGE. Meat Science 80, 462-469.
dc.identifier.citationHwang, A., Huang, L. 2010. Ready-to-eat foods: microbial concerns and control measures. CRC Press. Estados Unidos. Pp. 259.
dc.identifier.citationICONTEC – NTC 1325, 2008. Industrias Alimentarias. Productos Cárnicos Procesados No Enlatados. Pp 38.
dc.identifier.citationJofré, A., Garriga, M., Aymerich, T. 2008. Inhibition of Samonella sp, Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Science 78, 53 – 59.
dc.identifier.citationJuven, B. J., Barefoot, S. F., Pierson, M. D., McCaskill, L. H., Smith, B. 1998. Growth and survival of Listeria monocytogenes in vacuum-packaged ground beef inoculated with Lactobacillus alimentarius FloraCarn L-2. Journal of Food Protection, 61, 551– 556
dc.identifier.citationLiu, G. Wang, Y. Gui, M. Zheng, H. Dai, R. Li, P. 2012. Combined effect of high hydrostatic pressure and enterocin LM – 2 on the refrigerated shelf life of ready to eat sliced vacuum packed cooked ham. Food Control, 24, 64 – 71.
dc.identifier.citationMaldonado, S., Singh, J. 2008. Efecto de gelificantes en la formulación de dulce de yacón. Ciência e Tecnologia de Alimentos - Campinas, 28(2). 429 – 434.
dc.identifier.citationMarco, A., Navarro, J., Flores, M. 2006. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Science. 73. 660 – 673
dc.identifier.citationMartín-Sánchez. A.M, Chaves-López. C, Sendra. E, Sayas. E, Fernández-López. J, Pérez-Álvarez. J.A. 2011. Lipolysis, proteolysis and sensory characteristics of a Spanish fermented dry-cured meat product (salchichón) with oregano essential oil used as surface mold inhibitor. Meat Science 89. 35-44.
dc.identifier.citationMellefont, L., McMeekin, T., Ross, T. 2008. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. International Journal of Food Microbiology, 121, 157 – 168
dc.identifier.citationMontoya Pérez, L., Restrepo Molina, D., Suárez Mahecha, H. 2013. Influencia del Alginato de Sodio sobre la Sinéresis en Jamón Cocido. Consultado el 5 de diciembre de 2013. Disponible en: http://mundolacteoycarnico.com/category/mundo-lacteo-ycarnico/
dc.identifier.citationMora Soler, L. 2010. Determinación de compuestos bioquímicos para el control de calidad en la elaboración de jamón cocido y jamón curado. Tesis Doctoral. Universidad Politécnica de Valencia. España. pp. 282
dc.identifier.citationMuntal, B. 2007. Mejora de la seguridad alimentaria en productos cárnicos listos para el consumo mediante la aplicación combinada de tecnologías emergentes. Tesis Doctoral. Universitat de Girona. Cataluña. Pp 145.
dc.identifier.citationMyers, K., Cannon, J., Montoya, D., Dickson, J., Lonergan, S., Sebranek, J. 2013. Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from traditional and vegetable-based sources on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Meat Science, 94, 69-76
dc.identifier.citationOffice of Food Additive (HFS-200). 2004. Certification of Carnobacterium strains as GRAS. Burdock Group Consultants.
dc.identifier.citationO’Keeffe, T., & Hill, C. 1999. Bacteriocins. In R. K. Robinson, C. A. Batt, & P. D. Patel (Eds.), Encyclopedia of food microbiology (pp. 183–191)
dc.identifier.citationOrganización Mundial de la Salud (OMS). 2012. Enfermedades de transmisión alimentaria. Consultado el 28 de octubre de 2012. Disponible en: http://www.who.int/topics/foodborne_diseases/es/
dc.identifier.citationOssa, J., Coral, A., Vanegas, M. 2010. Microbiota de jamones de cerdo cocidos asociada al deterioro por abombamiento del empaque. Revista MVZ Córdoba, 15 (2), 2078 – 2086.
dc.identifier.citationRay Bibek. 2003. Fundamental Food Microbiology. CRC. Press. Library of Congress Cataloging-in-Publication Data.
dc.identifier.citationRodríguez, J. M., Martínez, M. I., Horn, N., Dodd, H. M. 2002. Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology, 80, 101–116.
dc.identifier.citationSanz, Y., Vila, R., Toldra, F., Nieto, P., Flores, J. 1997. Effect of nitrate and nitrite curing salts on microbial changes and sensory quality of rapid ripened sausages. International Journal of Food Microbiology. 37. 225 – 229.
dc.identifier.citationSalim – Ammor, M., Mayo, B. 2007. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Science. 76, 138 – 146
dc.identifier.citationSamelis, J., Kakouri, A., Rementzis, J., 2000. Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4 °C. Food Microbiology 17, 329– 340.
dc.identifier.citationSlongo, A., Rosenthal, A., Quaresma, L., Deliza, R., Mathias, S., Falcão de Aragão, G. 2009. Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT - Food Science and Technology. 42. 303 – 306.
dc.identifier.citationSpaziani, M., Del Torre, M., Stecchini, M. 2009. Changes of physicochemical, microbiological, and textural properties during ripening of Italian low-acid sausages. Proteolysis, sensory and volatile profiles. Meat Science. 81. 77 – 85
dc.identifier.citationSobrino. O.J. 1993. Caracterización parcial, bioquímica e inmunológica, de una sustancia antimicrobiana producida por Lactobacillus sake 148. Tesis Doctoral. Universidad Complutense de Madrid. España. Pp 293
dc.identifier.citationSteele, R. 2004. Understanding and measuring the shelf-life of food. Wood head Publishing Limited. Cambridge. Pp 407.
dc.identifier.citationTecnova. 2013. Informe de Análisis de Inteligencia Competitiva en Proyectos Universidad – Empresa cofinanciados por Colciencias – Proyecto Elaboración de Embutidos Cárnicos 221-2010. Colombia. Pp 80.
dc.identifier.citationUniversidad Nacional de Colombia. 2004. Curso Virtual Industrias Cárnicas. Consultado el 17 de agosto de 2012. Disponible en: http://www.virtual.unal.edu.co/cursos/agronomia/2001819/index.htmL
dc.identifier.citationUyttendaele, M., De Troy, P., Debevere, J., 1999. Incidence of Listeria monocytogenes in different types of meat products on the Belgian retail market. International Journal of Food Microbiology 53 (1), 75–80.
dc.identifier.citationVásquez. S, Suárez. H, Zapata. S. 2009. Utilización de Sustancias antimicrobianas producidas por bacterias ácido lácticas en la conservación de la carne. Revista Chilena de Nutrición. 36 (1)
dc.identifier.citationVereecken. K.M., Devlieghere. F., Bockstaele. A, Debevere. J, Van Impea. J.F. 2003. A model for lactic acid-induced inhibition of Yersinia enterocolitica in monoand co-culture with Lactobacillus sakei. Food Microbiology 20. 701 – 713.
dc.identifier.citationVermeiren, L. Devlieghere, F. Debevere. J. 2004. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. International Journal of Food Microbiology 96, 149 – 164.
dc.identifier.citationVermeiren. L. 2006. Biopreservation of anaerobically packaged sliced cooked meat products by non-bacteriocinogenic micro-organisms. Universiteit Gent. Pp. 306.
dc.identifier.citationVercammen, A., Kristof, G.A., Lurquin, I., Steen, L., Geomaere, O., Szczepaniak, S., Paelinck, H., Hendrickx, M. and Michiels, C. 2011. Shelf – life extension of cooked ham model product by high hydrostatic pressure and natural preservatives. Innovative Food science and Emerging Technologies. 12. 407 – 415.
dc.identifier.urihttp://hdl.handle.net/10818/10327
dc.description96 páginas
dc.description.abstractPara la industria de productos cárnicos cocidos, específicamente en productos listos para el consumo como salchichas, mortadela y jamón, el crecimiento de microorganismos patógenos como Listeria monocytogenes, Salmonella enteritidis, Escherichia coli y Staphylococcus aureus debe estar en continuo control, ya que podrían encontrarse como resultado de la contaminación cruzada en las operaciones de corte y empaque que se llevan a cabo después del proceso de cocción, el cual tiene como objetivos: coagulación de las proteínas, inactivación de enzimas, desarrollo de las características organolépticas deseadas y reducción del número de microorganismos. Así, la biopreservación es un método que busca disminuir la carga microbiana no deseada de un producto, después del proceso de cocción, por medio del uso de microorganismos con capacidad antimicrobiana. El empleo de estas cepas biopreservantes comerciales a nivel industrial requiere de procesos de validación en las diferentes matrices alimentarias sobre las cuales se quieran aplicar.es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectAlimentos -- Preservación -- Colombia
dc.subjectMicrobiología de la carne -- Colombia
dc.subjectMicroorganismos patógenos
dc.subjectBacterias patógenas
dc.subjectMicrobiología de alimentos
dc.titleEfecto de la bacteria ácido láctica b2® como biopreservante, sobre los patógenos de interés, la microbiota natural y las propiedades fisicoquímicas en un producto cárnico terminadoes_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local259245
dc.identifier.localTE06392
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record