Mostrar el registro sencillo del ítem

dc.contributor.authorTuta-Quintero E.
dc.contributor.authorBotero-Rosas D.
dc.contributor.authorBastidas-Goyes A.
dc.contributor.authorLeon-Ariza J.
dc.contributor.authorGuerrero A.
dc.contributor.authorAgudelo M.
dc.contributor.authorValenzuela N.
dc.date.accessioned2025-01-15T20:49:34Z
dc.date.available2025-01-15T20:49:34Z
dc.date.issued2024
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85214095556&doi=10.22354%2f24223794.1201&partnerID=40&md5=d455437fc1cc546004965cdf99ef2c0f
dc.identifier.urihttp://hdl.handle.net/10818/63364
dc.description.abstractIntroduction: This study aims to develop a neural network (NN) that can serve as a useful tool for early diagnosis of complicated malaria. Materials and methods: In this study, a feedforward NN was developed, incorporating 10 clinical variables in the input nodes, hidden layer, and output node. The data were included in the input layer. Various validation techniques such as V-cross, Random V-cross, Modified Holdout, and Proportional Percentage Sample were applied to train and validate the network using data from 412 patients. Results: The variables included in the analysis were mean arterial pressure, hemoglobin, leukocyte count, platelet count, total bilirubin, presence of dyspnea, vomiting, previous history of malaria, prior use of malaria medication, and persistent fever. The V-cross technique, Random V-cross Validation, Modified Holdout Validation, and Proportional Percentage Sample Validation were utilized to evaluate the performance of a NN in diagnosing malaria. Sensitivity values varied from 13% to 47%, with positive predictive value values ranging from 37% to 88%. Specificity remained consistently high, ranging from 79% to 90%. Discussion: Sensitivity, specificity, and positive predictive values varied across techniques: V-cross and random V-cross validation showed narrower sensitivity ranges with strong specificities, while modified holdout validation exhibited wider sensitivity variability. © 2024 Asociacion Colombiana de Infectologia. All rights reserved.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherInfectioes_CO
dc.relation.ispartofseriesInfectio vol. 28 n. 4 p. 235-240
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherArtificial intelligence
dc.subject.otherDiagnosis
dc.subject.otherMalaria
dc.titleApplication of artificial intelligence in the Prediction of Complications in patients with Malariaen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.22354/24223794.1201


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional