Mostrar el registro sencillo del ítem

dc.contributor.authorMuñoz-Villamizar A.
dc.contributor.authorFaulin J.
dc.contributor.authorReyes-Rubiano L.
dc.contributor.authorHenriquez-Machado R.
dc.contributor.authorSolano-Charris E.
dc.date.accessioned2024-11-12T13:43:03Z
dc.date.available2024-11-12T13:43:03Z
dc.date.issued2024
dc.identifier.issn23521457
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85187578129&doi=10.1016%2fj.trpro.2024.02.005&partnerID=40&md5=57456f0d25779b9c62e32a6afc0e4856
dc.identifier.urihttp://hdl.handle.net/10818/62773
dc.description.abstractFreight transportation is the backbone of urban economies and plays a critical role in the smooth functioning of cities. As such, devising efficient methods for freight transportation planning is of paramount importance. One of the most crucial aspects affecting the efficiency of freight transport is the variability in travel speeds, impacted by factors such as traffic congestion. While traditional approaches often rely on GPS technologies and associated routing services-which can be expensive-for planning, these methods also necessitate frequent re-optimization due to ever-changing traffic conditions. To address these challenges, we introduce a novel solution that integrates real-time traffic data into daily vehicle route planning. Specifically, our method incorporates Google Maps API for traffic congestion estimation and utilizes a Mixed Integer Linear Programming (MILP) model to determine optimal routes for an entire day. We tested our methodology in a major U.S. city and found that it outperforms conventional approaches by up to 18% in terms of routing time, underscoring its practical relevance and efficiency. © 2024 The Authors. Published by ELSEVIER B.V.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherTransportation Research Procediaes_CO
dc.relation.ispartofseriesTransportation Research Procedia Vol. 78
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherCase studyen
dc.subject.otherCity logisticsen
dc.subject.otherGoogle maps apien
dc.subject.otherVehicle routing problemen
dc.titleIntegration of Google Maps API with mathematical modeling for solving the Real-Time VRPen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1016/j.trpro.2024.02.005


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International