Apresentar o registro simples

dc.contributor.authorBoylan S
dc.contributor.authorArsenault C
dc.contributor.authorBarreto M
dc.contributor.authorBozza F.A
dc.contributor.authorFonseca A
dc.contributor.authorForde E
dc.contributor.authorHookham L
dc.contributor.authorHumphreys G.S
dc.contributor.authorIchihara M.Y
dc.contributor.authorLe Doare K
dc.contributor.authorLiu X.F
dc.date.accessioned2024-11-01T14:34:21Z
dc.date.available2024-11-01T14:34:21Z
dc.date.issued2024
dc.identifier.issn25897500
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85190974465&doi=10.1016%2fS2589-7500%2824%2900028-1&partnerID=40&md5=fe77caa2de1c515e3b1750f810bba44b
dc.identifier.urihttp://hdl.handle.net/10818/62178
dc.description.abstractThe COVID-19 pandemic highlighted the importance of international data sharing and access to improve health outcomes for all. The International COVID-19 Data Alliance (ICODA) programme enabled 12 exemplar or driver projects to use existing health-related data to address major research questions relating to the pandemic, and developed data science approaches that helped each research team to overcome challenges, accelerate the data research cycle, and produce rapid insights and outputs. These approaches also sought to address inequity in data access and use, test approaches to ethical health data use, and make summary datasets and outputs accessible to a wider group of researchers. This Health Policy paper focuses on the challenges and lessons learned from ten of the ICODA driver projects, involving researchers from 19 countries and a range of health-related datasets. The ICODA programme reviewed the time taken for each project to complete stages of the health data research cycle and identified common challenges in areas such as data sharing agreements and data curation. Solutions included provision of standard data sharing templates, additional data curation expertise at an early stage, and a trusted research environment that facilitated data sharing across national boundaries and reduced risk. These approaches enabled the driver projects to rapidly produce research outputs, including publications, shared code, dashboards, and innovative resources, which can all be accessed and used by other research teams to address global health challenges. © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherThe Lancet Digital Healthes_CO
dc.relation.ispartofseriesThe Lancet Digital Health Vol. 6 N° 5
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherOpen dataen
dc.subject.otherData accessen
dc.subject.otherData challengesen
dc.subject.otherData curationen
dc.subject.otherData sharingen
dc.subject.otherHealth dataen
dc.subject.otherHealth emergenciesen
dc.subject.otherHealth outcomesen
dc.subject.otherInternational healthsen
dc.subject.otherResearch cycleen
dc.titleData challenges for international health emergencies: lessons learned from ten international covid-19 driver projectsen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1016/S2589-7500(24)00028-1


Arquivos deste item

ArquivosTamanhoFormatoVisualização

Não existem arquivos associados a este item.

Este item aparece na(s) seguinte(s) coleção(s)

Apresentar o registro simples

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International