Mostrar el registro sencillo del ítem
Validity of an Artificial Neural Network in the Diagnosis of COPD
dc.contributor.author | Goyes A.B | |
dc.contributor.author | Quijano D.D | |
dc.contributor.author | Forero M.P | |
dc.contributor.author | Acosta J.R.C | |
dc.contributor.author | Quintero E.T | |
dc.contributor.author | Cely L.M | |
dc.contributor.author | Martinez L | |
dc.contributor.author | Acosta D | |
dc.contributor.author | Latorre L.F | |
dc.contributor.author | López C.L | |
dc.contributor.author | Rosas D.B. | |
dc.date.accessioned | 2024-10-09T14:28:34Z | |
dc.date.available | 2024-10-09T14:28:34Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 26638851 | |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85201301264&doi=10.33879%2fAMH.152.2022.10099&partnerID=40&md5=60627d84d72202904749ef808172add0 | |
dc.identifier.uri | http://hdl.handle.net/10818/61963 | |
dc.description.abstract | Background/Purpose: Neur al net wor ks anal yze a l arge amount of information and are useful in the classification of patients for the diagnosis of chronic obstructive pulmonary disease (COPD). However, its comparative performance with questionnaires for the diagnosis of COPD is unknown. The objective of the study is to evaluate the performance of a neural network against clinical questionnaires in the diagnosis of COPD. Methods: A cross-sectional study was carried out applying the clinical questionnaires and a perceptron neural network against the spirometric diagnosis of COPD. Results: A total of 1590 patients were admitted to the study, 13.5% of them were confirmed for COPD diagnosis. In the general population, average age was 67.6 years (SD = 14.0), and smoking history was 47.7% (758/1590). The questionnaire with the highest performance was the Could it be COPD with an ACOR of 0.83 (95% CI, 0.81–0.86) (p < 0.001), and the lowest performance was the LFQ with an ACOR of 0.66. (95% CI, 0.62–0.70)(p < 0.001). The ANNs showed an ACOR of 0.89 (95% CI, 0.86–0.91) (p < 0.001). Conclusion: Neural networks show a better diagnostic performance than the usual clinical questionnaires for the diagnosis of COPD. © 2024, Full Universe Integrated Marketing Limited. All rights reserved. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Aging Medicine and Healthcare | es_CO |
dc.relation.ispartofseries | Aging Medicine and Healthcare Vol. 15 N° 2 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | es_CO |
dc.source | Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject.other | COPD | en |
dc.subject.other | diagnosis | en |
dc.subject.other | Neural networks | en |
dc.subject.other | Questionnaires | en |
dc.title | Validity of an Artificial Neural Network in the Diagnosis of COPD | en |
dc.type | journal article | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.identifier.doi | 10.33879/AMH.152.2022.10099 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Facultad de Medicina [1345]