Mostrar el registro sencillo del ítem

dc.contributor.authorGoyes A.B
dc.contributor.authorQuijano D.D
dc.contributor.authorForero M.P
dc.contributor.authorAcosta J.R.C
dc.contributor.authorQuintero E.T
dc.contributor.authorCely L.M
dc.contributor.authorMartinez L
dc.contributor.authorAcosta D
dc.contributor.authorLatorre L.F
dc.contributor.authorLópez C.L
dc.contributor.authorRosas D.B.
dc.date.accessioned2024-10-09T14:28:34Z
dc.date.available2024-10-09T14:28:34Z
dc.date.issued2024
dc.identifier.issn26638851
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85201301264&doi=10.33879%2fAMH.152.2022.10099&partnerID=40&md5=60627d84d72202904749ef808172add0
dc.identifier.urihttp://hdl.handle.net/10818/61963
dc.description.abstractBackground/Purpose: Neur al net wor ks anal yze a l arge amount of information and are useful in the classification of patients for the diagnosis of chronic obstructive pulmonary disease (COPD). However, its comparative performance with questionnaires for the diagnosis of COPD is unknown. The objective of the study is to evaluate the performance of a neural network against clinical questionnaires in the diagnosis of COPD. Methods: A cross-sectional study was carried out applying the clinical questionnaires and a perceptron neural network against the spirometric diagnosis of COPD. Results: A total of 1590 patients were admitted to the study, 13.5% of them were confirmed for COPD diagnosis. In the general population, average age was 67.6 years (SD = 14.0), and smoking history was 47.7% (758/1590). The questionnaire with the highest performance was the Could it be COPD with an ACOR of 0.83 (95% CI, 0.81–0.86) (p < 0.001), and the lowest performance was the LFQ with an ACOR of 0.66. (95% CI, 0.62–0.70)(p < 0.001). The ANNs showed an ACOR of 0.89 (95% CI, 0.86–0.91) (p < 0.001). Conclusion: Neural networks show a better diagnostic performance than the usual clinical questionnaires for the diagnosis of COPD. © 2024, Full Universe Integrated Marketing Limited. All rights reserved.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherAging Medicine and Healthcarees_CO
dc.relation.ispartofseriesAging Medicine and Healthcare Vol. 15 N° 2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherCOPDen
dc.subject.otherdiagnosisen
dc.subject.otherNeural networksen
dc.subject.otherQuestionnairesen
dc.titleValidity of an Artificial Neural Network in the Diagnosis of COPDen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.33879/AMH.152.2022.10099


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International