Mostrar el registro sencillo del ítem

dc.contributor.authorMuñoz-Villamizar A
dc.contributor.authorPiatti M
dc.contributor.authorMejía-Argueta C
dc.contributor.authorPirabe L.F
dc.contributor.authorNamdar J
dc.contributor.authorGomez J.F.
dc.date.accessioned2024-10-09T14:28:30Z
dc.date.available2024-10-09T14:28:30Z
dc.date.issued2024
dc.identifier.issn9696989
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85191158117&doi=10.1016%2fj.jretconser.2024.103875&partnerID=40&md5=a291a7b49f8891c4f469ba9c5157532d
dc.identifier.urihttp://hdl.handle.net/10818/61955
dc.description.abstractIn response to the escalating challenges of global inflation, particularly in developing countries like Brazil, this study combines web scraping and machine learning to analyze inflation dynamics within the retail sector. By systematically real-time pricing and product data from a sponsor company and its four main competitors, we focus on Brazil's most consumed staple foods—beans, rice, sugar, and coffee. Our analysis reveals critical insights into how inflation impacts consumer choices and supply chain operations, highlighting the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. The findings highlight the effectiveness of this approach in providing strategic solutions for managing retail sectors under economic stress. Notably, we observed a 400% increase in sales volume for beans following a 50% price reduction and discovered coffee's price stability as a competitive advantage. Additionally, managerial insights emphasize the importance of diversified sourcing and strategic inventory management to mitigate the adverse effects of inflation. © 2024 Elsevier Ltden
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherJournal of Retailing and Consumer Serviceses_CO
dc.relation.ispartofseriesJournal of Retailing and Consumer Services Vol. 79 N° art. 103875
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherConsumer behavioren
dc.subject.otherData miningen
dc.subject.otherFood pricesen
dc.subject.otherPrice elasticityen
dc.subject.otherWeb scrapingen
dc.titleNavigating retail inflation in Brazil: A machine learning and web scraping approach to the basic food basketen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.1016/j.jretconser.2024.103875


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International