Mostrar el registro sencillo del ítem

dc.contributor.authorSolano-Charris E.L.
dc.contributor.authorGómez-Vizcaíno L.S.
dc.contributor.authorMontoya-Torres J.R.
dc.contributor.authorPaternina-Arboleda C.D.
dc.date.accessioned2024-05-23T13:29:47Z
dc.date.available2024-05-23T13:29:47Z
dc.date.issued2011
dc.identifier.citationSolano-Charris, E.L., Gómez-Vizcaíno, L.S., Montoya-Torres, J.R., Paternina-Arboleda, C.D. Global bacteria optimization meta-heuristic: Performance analysis and application to shop scheduling problems (2011) Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutions, pp. 178-194.es_CO
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84899347683&doi=10.4018%2f978-1-61350-086-6.ch009&partnerID=40&md5=d0c8399284753500bfa99e688e1de861
dc.identifier.urihttp://hdl.handle.net/10818/60183
dc.description16 páginases_CO
dc.description.abstractA large number of real-life optimization problems in economics and business are complex and difficult to solve. Hence, using approximate algorithms is a very good alternative to solve this class of problems. Meta-heuristics solution procedures represent general approximate algorithms applicable to a large variety of optimization problems. Most of the meta-heuristics mimic natural metaphors to solve complex optimization problems. This chapter presents a novel procedure based on Bacterial Phototaxis, called Global Bacteria Optimization (GBO) algorithm, to solve combinatorial optimization problems. The algorithm emulates the movement of an organism in response to stimulus from light. The effectiveness of the proposed meta-heuristic algorithm is first compared with the well-known meta-heuristic MOEA (Multi-Objective Evolutionary Algorithm) using mathematical functions. The performance of GBO is also analyzed by solving some single- and multi-objective classical jobshop scheduling problems against state-of-the-art algorithms. Experimental results on well-known instances show that GBO algorithm performs very well and even outperforms existing meta-heuristics in terms of computational time and quality of solution. © 2012, IGI Global.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherHybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutionses_CO
dc.relation.ispartofseriesHybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and Scheduling Solutions p. 178-194
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.titleGlobal bacteria optimization meta-heuristic: Performance analysis and application to shop scheduling problemsen
dc.typebook partes_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.4018/978-1-61350-086-6.ch009


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

 
Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International