Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz, Ruth Yolanda
dc.contributor.advisorEscobar, Sebastián
dc.contributor.authorBecerra García, Lili Dahiana
dc.date.accessioned2024-03-19T12:58:09Z
dc.date.available2024-03-19T12:58:09Z
dc.date.issued2023-10-19
dc.identifier.urihttp://hdl.handle.net/10818/59496
dc.description309 páginases_CO
dc.description309 páginases_CO
dc.description.abstractCocoa, a versatile crop with rich historical significance, continues to hold cultural, social, and economic value worldwide. Therefore, enhancing the quality of chocolates through controlled cocoa seed transformation is of utmost importance, particularly in the chocolate industry, where consumers expect products that exhibit exceptional sensory characteristics and functional properties inherent in the composition. The cocoa seed transformation under controlled process conditions is in continuous development and seeks to consolidate itself as an emerging technology that offers benefits over spontaneous fermentation. The controlled transformation serves as the central focus of the research presented in this doctoral thesis, aiming to understand how the quality of chocolate is influenced depending on the operational variables during the transformation. To reveal it, this research analyzes the physical, chemical, and sensory changes in cocoa seeds and chocolates throughout the process. Various analytical techniques, including spectrophotometry, chromatography, and microscopic techniques, such as confocal laser scanning and scanning electron microscopy, are employed. Additionally, mathematical modeling, multivariate analysis, and image analysis tools are used to enhance the analysis. The results reveal a differentiated effect of organic acids on the microstructure of cocoa seeds during processing. They also highlight the significance of the mass transfer phenomenon in conditioning the seeds to initiate desired chemical reactions. Moreover, the concentration of organic acid emerges as the operational variable with the most significant influence on the content of bioactive compounds and the color parameters exhibited by cocoa matrices, the metabolomic profile of cocoa beans, and the volatile compound and sensory profiles of chocolates, playing a crucial role in the development of sensory notes, such as fruity, nutty, or sweet characteristics. These findings provide valuable insights into optimizing cocoa processing techniques and developing alternative approaches based on the dynamics of quality-related compound formation. Furthermore, they provide valuable guidance for positioning and expanding the exportable national cocoa supply in the market segment focused on high-quality products.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherCocoa seed-controlled transformation
dc.subject.otherFine aroma cocoa
dc.subject.otherOrganic acids
dc.subject.otherQuality-related compounds
dc.subject.otherChocolate
dc.titleTransformación de semilla a grano de cacao bajo condiciones controladas de proceso como alternativa para la valorización poscosechaes_CO
dc.title.alternativeCocoa seed transformation under controlled process conditions as an alternative for postharvest valorizationes_CO
dc.typedoctoral thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsembargoedAccesses_CO
dcterms.referencesAi, J., Wu, Q., Battino, M., Bai, W., & Tian, L. (2021). Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chemistry, 364, 130425. https://doi.org/10.1016/j.foodchem.2021.130425
dcterms.referencesAkoa, S. P., Boulanger, R., Effa Onomo, P., Lebrun, M., Ondobo, M. L., Lahon, M.-C., Ntyam Mendo, S. A., Niemenak, N., & Djocgoue, P.-F. (2023). Sugar profile and volatile aroma composition in fermented dried beans and roasted nibs from six controlled pollinated Cameroonian fine-flavor 258 cocoa (Theobroma cacao L.) hybrids. Food Bioscience, 53, 102603. https://doi.org/10.1016/j.fbio.2023.102603
dcterms.referencesAssi-Clair, B. J., Koné, M. K., Kouamé, K., Lahon, M. C., Berthiot, L., Durand, N., Lebrun, M., JulienOrtiz, A., Maraval, I., Boulanger, R., & Guéhi, T. S. (2019). Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. European Food Research and Technology, 245(7), 1459–1471. https://doi.org/10.1007/s00217-018-3181-6
dcterms.referencesBastos, V. S., Uekane, T. M., Bello, N. A., de Rezende, C. M., Flosi Paschoalin, V. M., & Del Aguila, E. M. (2019). Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. Journal of Food Science and Technology, 56(6), 2874–2887. https://doi.org/10.1007/s13197-019-03736-3
dcterms.referencesBecerra, L. D., Quintanilla-Carvajal, M. X., Escobar, S., & Ruiz, R. Y. (2023). Correlation between color parameters and bioactive compound content during cocoa seed transformation under controlled process conditions. Food Bioscience, 53, 102526. https://doi.org/10.1016/j.fbio.2023.102526
dcterms.referencesBecerra, L. D., Zuluaga, M., Mayorga, E. Y., Moreno, F. L., Ruíz, R. Y., & Escobar, S. (2022). Cocoa seed transformation under controlled process conditions: Modelling of the mass transfer of organic acids and reducing sugar formation analysis. Food and Bioproducts Processing, 136, 211– 225. https://doi.org/10.1016/j.fbp.2022.10.008
dcterms.referencesCalva-Estrada, S. J., Utrilla-Vázquez, M., Vallejo-Cardona, A., Roblero-Pérez, D. B., & LugoCervantes, E. (2020). Thermal properties and volatile compounds profile of commercial darkchocolates from different genotypes of cocoa beans (Theobroma cacao L.) from Latin America. Food Research International, 136, 109594. https://doi.org/10.1016/j.foodres.2020.109594
dcterms.referencesCui, C., Zhu, L., Wang, Q., Liu, R., Xie, D., Guo, Y., Yu, D., Wang, C., Chen, D., & Jiang, P. (2022). A GC–MS-based untargeted metabolomics approach for comprehensive metabolic profiling of vancomycin-induced toxicity in mice. Heliyon, 8(7), e09869. https://doi.org/10.1016/j.heliyon.2022.e09869
dcterms.referencesEyamo Evina, V. J., De Taeye, C., Niemenak, N., Youmbi, E., & Collin, S. (2016). Influence of acetic and lactic acids on cocoa flavan-3-ol degradation through fermentation-like incubations. LWT - Food Science and Technology, 68, 514–522. https://doi.org/10.1016/j.lwt.2015.12.047
dcterms.referencesGao, Y., Hou, L., Gao, J., Li, D., Tian, Z., Fan, B., Wang, F., & Li, S. (2021). Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods, 10(10), Article 10. https://doi.org/10.3390/foods10102294
dcterms.referencesGemert, L. J. van. (2011). Odour thresholds: Compilations of odour threshold values in air, water and other media (Second edition). Oliemans Punter.
dcterms.referencesGutiérrez-Ríos, H. G., Suárez-Quiroz, M. L., Hernández-Estrada, Z. J., Castellanos-Onorio, O. P., Alonso-Villegas, R., Rayas-Duarte, P., Cano-Sarmiento, C., Figueroa-Hernández, C. Y., & González-Rios, O. (2022). Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. Fermentation, 8(7), Article 7. https://doi.org/10.3390/fermentation8070331
dcterms.referencesHerrera-Rocha, F., Fernández-Niño, M., Cala, M. P., Duitama, J., & Barrios, A. F. G. (2023). Omics approaches to understand cocoa processing and chocolate flavor development: A review. Food Research International, 165, 112555. https://doi.org/10.1016/j.foodres.2023.112555
dcterms.referencesHinneh, M., Van de Walle, D., Haeck, J., Abotsi, E. E., De Winne, A., Saputro, A. D., Messens, K., Van Durme, J., Afoakwa, E. O., De Cooman, L., & Dewettinck, K. (2019). Applicability of the melanger for chocolate refining and Stephan mixer for conching as small-scale alternative chocolate production techniques. Journal of Food Engineering, 253, 59–71. https://doi.org/10.1016/j.jfoodeng.2019.02.016
dcterms.referencesJohn, W. A., Böttcher, N. L., Aßkamp, M., Bergounhou, A., Kumari, N., Ho, P.-W., D’Souza, R. N., Nevoigt, E., & Ullrich, M. S. (2019). Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chemistry, 278, 786–794. https://doi.org/10.1016/j.foodchem.2018.11.108
dcterms.referencesKadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) – Reconstruction and guidance of the fermentation process. LWT - Food Science and Technology, 62(1), 357–361. https://doi.org/10.1016/j.lwt.2015.01.015
dcterms.referencesKouassi, A. D. D., Koné, K. M., Assi-Clair, B. J., Lebrun, M., Maraval, I., Boulanger, R., Fontana, A., & Guehi, T. S. (2022). Effect of spontaneous fermentation location on the fingerprint of volatile compound precursors of cocoa and the sensory perceptions of the end-chocolate. Journal of Food Science and Technology, 59(11), 4466–4478. https://doi.org/10.1007/s13197-022-05526- w
dcterms.referencesLiu, M., Liu, J., He, C., Song, H., Liu, Y., Zhang, Y., Wang, Y., Guo, J., Yang, H., & Su, X. (2017). Characterization and comparison of key aroma-active compounds of cocoa liquors from five different areas. International Journal of Food Properties, 20(10), 2396–2408. https://doi.org/10.1080/10942912.2016.1238929
dcterms.referencesMagagna, F., Guglielmetti, A., Liberto, E., Reichenbach, S. E., Allegrucci, E., Gobino, G., Bicchi, C., & Cordero, C. (2017). Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination. Journal of Agricultural and Food Chemistry, 65(30), 6329– 6341. https://doi.org/10.1021/acs.jafc.7b02167
dcterms.referencesMayorga-Gross, A. L., Quirós-Guerrero, L. M., Fourny, G., & Vaillant, F. (2016). An untargeted metabolomic assessment of cocoa beans during fermentation. Food Research International, 89, 901–909. https://doi.org/10.1016/j.foodres.2016.04.017
dcterms.referencesMeersman, E., Steensels, J., Struyf, N., Paulus, T., Saels, V., Mathawan, M., Allegaert, L., Vrancken, G., & Verstrepen, K. J. (2016). Tuning Chocolate Flavor through Development of Thermotolerant Saccharomyces cerevisiae Starter Cultures with Increased Acetate Ester Production. Applied and Environmental Microbiology, 82(2), 732–746. https://doi.org/10.1128/AEM.02556-15
dcterms.referencesOwusu, M., Petersen, M. A., & Heimdal, H. (2012). Effect of Fermentation Method, Roasting and Conching Conditions on the Aroma Volatiles of Dark Chocolate. Journal of Food Processing and Preservation, 36(5), 446–456. https://doi.org/10.1111/j.1745-4549.2011.00602.x
dcterms.referencesPang, Z., Zhou, G., Ewald, J., Chang, L., Hacariz, O., Basu, N., & Xia, J. (2022). Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols, 17(8), Article 8. https://doi.org/10.1038/s41596-022- 00710-w
dcterms.referencesQuelal, O. M., Hurtado, D. P., Benavides, A. A., Alanes, P. V., & Alanes, N. V. (2023). Key Aromatic Volatile Compounds from Roasted Cocoa Beans, Cocoa Liquor, and Chocolate. Fermentation, 9(2), Article 2. https://doi.org/10.3390/fermentation9020166
dcterms.referencesRottiers, H., Tzompa Sosa, D. A., De Winne, A., Ruales, J., De Clippeleer, J., De Leersnyder, I., De Wever, J., Everaert, H., Messens, K., & Dewettinck, K. (2019). Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. European Food Research and Technology, 245(9), 1917–1937. https://doi.org/10.1007/s00217- 019-03307-y
dcterms.referencesSantander, M., Vaillant, F., Sinuco, D., Rodríguez, J., & Escobar, S. (2021). Enhancement of fine flavour cocoa attributes under a controlled postharvest process. Food Research International, 143, 110236. https://doi.org/10.1016/j.foodres.2021.110236
dcterms.referencesThonusin, C., IglayReger, H. B., Soni, T., Rothberg, A. E., Burant, C. F., & Evans, C. R. (2017). Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multibatch metabolomics data. Journal of Chromatography A, 1523, 265–274. https://doi.org/10.1016/j.chroma.2017.09.023
dcterms.referencesTran, P. D., Van Durme, J., Van de Walle, D., de Winne, A., Delbaere, C., de Clercq, N., Phan, T. T. Q., Phuc Nguyen, C.-H., Tran, D. N., & Dewettinck, K. (2016). Quality Attributes of Dark Chocolate Produced from Vietnamese Cocoa Liquors. Journal of Food Quality, 39(4), 311–322. https://doi.org/10.1111/jfq.12200
dcterms.referencesTuenter, E., Delbaere, C., De Winne, A., Bijttebier, S., Custers, D., Foubert, K., Van Durme, J., Messens, K., Dewettinck, K., & Pieters, L. (2020). Non-volatile and volatile composition of West 261 African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Research International, 130, 108943. https://doi.org/10.1016/j.foodres.2019.108943
dcterms.referencesValle-Epquín, M. G., Balcázar-Zumaeta, C. R., Auquiñivín-Silva, E. A., Fernández-Jeri, A. B., IdrogoVásquez, G., & Castro-Alayo, E. M. (2020). The roasting process and place of cultivation influence the volatile fingerprint of Criollo cocoa from Amazonas, Peru. Scientia Agropecuaria, 11(4), Article 4. https://doi.org/10.17268/sci.agropecu.2020.04.16
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional