Mostrar el registro sencillo del ítem

dc.contributor.advisorVega Mejía, Carlos Alberto
dc.contributor.advisorJiménez Gordillo, José Fernando
dc.contributor.authorArango Rosero, Javier
dc.date.accessioned2024-02-26T19:35:50Z
dc.date.available2024-02-26T19:35:50Z
dc.date.issued2023-10-20
dc.identifier.urihttp://hdl.handle.net/10818/59313
dc.description118 páginases_CO
dc.description.abstractLa problemática del diseño de la cadena de suministro y los problemas de localización de instalaciones como plantas o centros de distribución tradicionalmente buscan minimizar los costos, las distancias de viaje y/o optimizar los niveles de servicio. Sin embargo, se ha vuelto necesario considerar procedimientos de resolución que integren nuevos objetivos que surgen de la necesidad de buscar la permanencia a largo plazo. Asimismo, es necesario incorporar los impactos de la variabilidad, por lo que es importante contar con nuevas herramientas que validen los resultados encontrados como la simulación. El presente trabajo de investigación desarrolló modelo de optimización multi-objetivo para definir la localización de un centro de distribución de repuestos, generando conjuntos de soluciones eficientes en términos de costos de operación y transporte (objetivo económico), consumo de combustible (objetivo ambiental) y la mayor cobertura de la demanda posible (objetivo social).es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherProblemas de localización (Programa)
dc.subject.otherConfiabilidad
dc.subject.otherOptimización multiobjetivo
dc.titleModelo de optimización multi-objetivo para la localización de un centro de distribución de repuestos en Colombiaes_CO
dc.typemaster thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcInvestigación de operaciones
dc.subject.armarcSostenibilidad
dcterms.referencesAfify, B. (2019a). Evolutionary learning algorithm for reliable facility location under disruption. Expert Systems With Applications, 22.
dcterms.referencesAfify, B. (2019b). Evolutionary learning algorithm for reliable facility location under disruption. Expert Systems With Applications, 22.
dcterms.referencesAlcaraz, J., Landete, M., Monge, J. F., & Sainz-Pardo, J. L. (2019). Multi-Objective Evolutionary Algorithms for a reliable location problem. European Journal of Operational Research.
dcterms.referencesAlcaraz, J., Landete, M., Monge, J. F., & Sainz-Pardo, J. L. (2020a). Multi-objective evolutionary algorithms for a reliability location problem. European Journal of Operational Research, 283(1), 83–93. https://doi.org/10.1016/j.ejor.2019.10.043
dcterms.referencesAlcaraz, J., Landete, M., Monge, J. F., & Sainz-Pardo, J. L. (2020b). Multi-objective evolutionary algorithms for a reliability location problem. European Journal of Operational Research, 283(1), 83–93. https://doi.org/10.1016/j.ejor.2019.10.043
dcterms.referencesÁlvarez-Miranda, E., Fernández, E., & Ljubic, I. (2015). The recoverable robust facility location problem. 28.
dcterms.referencesAman, S., & Seuring, S. (2021). Analysing developing countries approaches of supply chain resilience to COVID-19. The International Journal of Logistics Management. https://doi.org/10.1108/IJLM-07-2021-0362
dcterms.referencesAnvari, S. (2017). The facility location problem from the perspective of triple bottom line accounting of sustainability. 23.
dcterms.referencesArango, J., Vega-Mejía, C. A., & Jimenez, J. F. (2022, noviembre). Facility Location Problems with Multiple Objectives and Decision Criteria: A review of current trends in research. ICPR2022. International Conference of Production Research, Curitiba, Brazil.
dcterms.referencesAria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
dcterms.referencesArmas, J. (2016). Solving the deterministic and stochastic uncapacitated facility location problem: From a heuristic to a simheuristic. Journal of the Operational Research Society, 16.
dcterms.referencesBansal, M., Garg, N., & Gupta, N. (2018). A 5-Approximation for Universal Facility Location [Application/pdf]. 12 pages. https://doi.org/10.4230/LIPICS.FSTTCS.2018.24
dcterms.referencesBasu, S., Sharma, M., & Ghosh, P. S. (2014). Metaheuristic applications on discrete facility location problems: A survey. 32.
dcterms.referencesBateman, A., Betts, K., Cottrill, K., Pang, J., & Deshpande, A. (2021). State of Supply Chain Sustainability—2021. State of Supply Chain Sustainability. https://sscs.mit.edu/
dcterms.referencesBegum, H., Abbas, K., Alam, A. S. A. F., Song, H., Chowdhury, M. T., & Abdul Ghani, A. B. (2022). Impact of the COVID-19 pandemic on the environment and socioeconomic viability: A sustainable production chain alternative. Foresight, 24(3/4), 456–475. https://doi.org/10.1108/FS-02-2021-0053
dcterms.referencesBilir, C. (2017). An integrated multi-objective supply chain network and competitive facility location model. Industrial Engineering, 13.
dcterms.referencesBouchery, Y., Corbett, C. J., Fransoo, J. C., & Tan, T. (Eds.). (2017). Sustainable Supply Chains: A Research-Based Textbook on Operations and Strategy (1st ed. 2017). Springer International Publishing: Imprint: Springer. https://doi.org/10.1007/978-3-319-29791-0
dcterms.referencesBoujelben, M. K. (2016). A MILP model and heuristic approach for facility location under multiple operational constraints. Industrial Engineering, 16.
dcterms.referencesBoujelben, M. K. (2018). Modeling international facility location under uncertainty: A review, analysis, and insights. 18
dcterms.referencesBrandeau, M. L., & Chiu, S. S. (1989). An Overview of Representative Problems in Location Research. 31.
dcterms.referencesCaplice, C., & Ponce, E. (2022). MITx MicroMasters Program in SCM Key Concepts.
dcterms.referencesChadawada, R., Sarfaraz, A., Jenab, K., & Pourmohammadi, H. (2015). Integration of AHPQFD for selecting facility location. 17.
dcterms.referencesChalupa, D. (2019). Instance Scale, Numerical Properties and Design of Metaheuristics: A Study for the Facility Location Problem. IFAC PapersOnLine, 6.
dcterms.referencesChen, Y., Yu, J., & Khan, S. (2013). The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environmental Modeling & Software. http://dx.doi.org/10.1016/j.envsoft.2013.06.010
dcterms.referencesCheng, C. (2018). A two-stage robust approach for the reliable logistics network design problem. 18.
dcterms.referencesCohen, J. J. (1973). A SURVEY ON THE WAREHOUSE LOCATION PROBLEM. 30.
dcterms.referencesConiglio, S. (2017). Optimization and Decision Science: Methodologies and Applications (A. Sforza & C. Sterle, Eds.; Vol. 217). Springer International Publishing. https://doi.org/10.1007/978-3-319-67308-0
dcterms.referencesDaskin, M. S., Snyder, L. V., & Berger, R. T. (2005). Facility Location in Supply Chain Design. En A. Langevin & D. Riopel (Eds.), Logistics Systems: Design and Optimization (pp. 39– 65). Springer-Verlag. https://doi.org/10.1007/0-387-24977-X_2
dcterms.referencesDavoodi, M. (2019). k-Balanced Center Location problem: A new multi-objective facility location problem. 17.
dcterms.referencesDo Ceu Marques, M., & Matos Dias, J. (2015). Dynamic Location Problem under uncertainty with regret-based measure of robustness. International Transactions in Operational Research.
dcterms.referencesEssaadi, I. (2019). Location of global logistic hubs within Africa based on a fuzzy multi-criteria approach. Industrial Engineering, 22.
dcterms.referencesEstadistica de Consumo de Repuestos para camion clase 8 en Mexico y Latam. (2023). MacKay.
dcterms.referencesFarahani, R. Z. (2014a). Hierarchical facility location problem: Models, classifications, techniques, and applications. Industrial Engineering, 14.
dcterms.referencesFarahani, R. Z. (2014b). Location-inventory problem in supply chains: A modelling review. 21.
dcterms.referencesFarahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010a). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 21.
dcterms.referencesFarahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010b). Multiple criteria facility location problems: A survey. Applied Mathematical Modelling, 34(7), 1689–1709. Scopus. https://doi.org/10.1016/j.apm.2009.10.005
dcterms.referencesFonseca, R. (2019). Métodos de escalarización en optimización multiobjetivo. Universidad Nacional de Cordoba
dcterms.referencesFötsch, N. (2021). LibGuides: Literature search: Snowball and citation search. https://libguides.ru.nl/literaturesearch/snowball
dcterms.referencesGhaderi, A. (2015). Heuristic Algorithms for Solving an Integrated Dynamic Center Facility Location—Network Design Model. 27.
dcterms.referencesGünther, C. (2016). Relationships between constrained and unconstrained multi-objective optimization and application in location theory. 29.
dcterms.referencesGuo, C. (2016). The research on optimization of auto supply chain network robust model under macroeconomic fluctuations. 10.
dcterms.referencesGuo, K. (2020). Research on location selection model of distribution network with constrained line constraints based on genetic algorithm. Neural Computing and Applications, 11.
dcterms.referencesGupta, R., Rathore, B., & Biswas, B. (2021). Impact of COVID-19 on supply chains: Lessons learned and future research directions. International Journal of Quality & Reliability Management. https://doi.org/10.1108/IJQRM-06-2021-0161
dcterms.referencesGutjahr, W. J. (2016). Bi-objective bilevel optimization of distribution center locations considering user equilibria. 22
dcterms.referencesHakimi, S. L. (1964). Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph. Operations Research, 12(3), 450–459. https://doi.org/10.1287/opre.12.3.450
dcterms.referencesHale, T. S., & Moberg, C. R. (2003a). Location Science Research: A Review. 15.
dcterms.referencesHale, T. S., & Moberg, C. R. (2003b). Location Science Research: A Review. 15
dcterms.referencesHale, T. S., & Moberg, C. R. (2003c). Location Science Research: A Review. 15.
dcterms.referencesHamidi, M. R., Gholamian, M. R., Shahanaghi, K., & Yavari, A. (2017). Reliable warehouse location-network design problem under intentional disruption. Computers & Industrial Engineering, 113, 123–134. https://doi.org/10.1016/j.cie.2017.09.012
dcterms.referencesHamidi, M. R., Gholamian, M. R., Shahanaghi, K., & Yavari, A. (2017). Reliable warehouse location-network design problem under intentional disruption. Computers & Industrial Engineering, 113, 123–134. https://doi.org/10.1016/j.cie.2017.09.012
dcterms.referencesHeckmann, I. (2016). Towards supply chain risk analytics. Springer Berlin Heidelberg
dcterms.referencesISO. (2010). ISO 26000—Guidance on social responsability. ISO.
dcterms.referencesIzdebski, M., Jacyna-Gołda, I., Wasiak, M., Jachimowski, R., Kłodawski, M., Pyza, D., & Żak, J. (2018). THE APPLICATION OF THE GENETIC ALGORITHM TO MULTI-CRITERIA WAREHOUSES LOCATION PROBLEMS ON THE LOGISTICS NETWORK. 10.
dcterms.referencesJacyna-Gołda, I. (2017). The Multi-criteria Decision Support in Choosing the Efficient Location of Warehouses in the Logistic Network. Procedia Engineering, 6.
dcterms.referencesJakubovskis, A. (2017). Strategic facility location, capacity acquisition, and technology choice decisions under demand uncertainty: Robust vs. Non-robust optimization approaches. European Journal of Operational Research, 10.
dcterms.referencesJanet Fraser (Director). (2021). Multiple Objective Linear Programming. https://www.youtube.com/watch?v=n-AgJ-FLiBQ
dcterms.referencesJia, H., Xu, Y., Tian, G., Zhou, M. C., Zhang, J., & Zhang, H. (2018). Random Energy-efficient Models for Sustainable Facility Location Subject to Carbon Emission, Economical, Capacitated and Regional Constraints. IEEE Access, 1–1. https://doi.org/10.1109/ACCESS.2018.2870596
dcterms.referencesKarakitsiou, A. (2015). Modeling discrete competitive facility location. Springer Science+Business Media.
dcterms.referencesKaratas, M. (2017). An Iterative Solution Approach to a Multi-Objective Facility Location Problem. 36.
dcterms.referencesKorte, B., & Vygen, J. (2018). Combinatorial Optimization: Theory and Algorithms (6th ed. 2018). Springer Berlin Heidelberg : Imprint: Springer. https://doi.org/10.1007/978-3-662- 56039-6
dcterms.referencesLa realidad de América Latina | ADEN Escuela de Negocios. (2022, junio 24). ADEN Business Magazine. https://www.aden.org/business-magazine/ranking-aden-de-competitividadcual-es-la-realidad-de-america-latina/
dcterms.referencesLai, C.-M. (2019a). A novel nondominated sorting simplified swarm optimization for multi-stage capacitated facility location problems with multiple quantitative and qualitative objectives. 17.
dcterms.referencesLai, C.-M. (2019b). Integrating simplified swarm optimization with AHP for solving capacitated military logistic depot location problem. 12.
dcterms.referencesLaporte, G., Nickel, S., & Saldanha da Gama, F. (Eds.). (2015a). Location Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-13111-5
dcterms.referencesLaporte, G., Nickel, S., & Saldanha da Gama, F. (Eds.). (2015b). Location Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-13111-5
dcterms.referencesLu, M., Ran, L., & Shen, Z.-J. M. (2015). Reliable Facility Location Design Under Uncertain Correlated Disruptions. 12.
dcterms.referencesManthey, B., & Tijink, M. B. (2018). Perturbation resilience for the facility location problem. Operations Research Letters, 46(2), 215–218. https://doi.org/10.1016/j.orl.2018.01.003
dcterms.referencesMelo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
dcterms.referencesMovahedipour, M., Yang, M., Zeng, J., Wu, X., & Salam, S. (2016). Optimization in supply chain management, the current state and future directions: A systematic review and bibliometric analysis. Journal of Industrial Engineering and Management, 9(4), 933. https://doi.org/10.3926/jiem.2035
dcterms.referencesNasir, S. B., Ahmed, T., Karmaker, C. L., Ali, S. M., Paul, S. K., & Majumdar, A. (2022). Supply chain viability in the context of COVID-19 pandemic in small and medium-sized enterprises: Implications for sustainable development goals. Journal of Enterprise Information Management, 35(1), 100–124. https://doi.org/10.1108/JEIM-02-2021-0091
dcterms.referencesOmrani, H., & Ghiasi, F. G. (2017). Facility location decisions in supply chain design under uncertainty: A robust optimisation approach. 16.
dcterms.referencesOnstein, A. T. C., Ektesaby, M., Rezaei, J., Tavasszy, L. A., & van Damme, D. A. (2019). Importance of factors driving firms’ decisions on spatial distribution structures. International Journal of Logistics Research and Applications, 23(1), 24–43. https://doi.org/10.1080/13675567.2019.1574729
dcterms.referencesOnstein, A. T. C., van Damme, D. A., & Tavasszy, L. A. (2015). DISTRIBUTION STRUCTURE AND DISTRIBUTION CENTRE LOCATION DECISION-MAKING - A REVIEW. 19.
dcterms.referencesOrtiz-Astorquiza, C., Contreras, I., & Laporte, G. (2018). Multi-level facility location problems. European Journal of Operational Research, 267(3), 791–805. https://doi.org/10.1016/j.ejor.2017.10.019
dcterms.referencesOwen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, 25.
dcterms.referencesPaccar Parts. (2022). PACCAR Parts. https://www.paccarparts.com/
dcterms.referencesPapathanasiou, J., & Ploskas, N. (2018). Multiple Criteria Decision Aid: Methods, Examples and Python Implementations (1st ed. 2018). Springer International Publishing : Imprint: Springer. https://doi.org/10.1007/978-3-319-91648-4
dcterms.referencesPinilla, J., & Castro, J. (2015). Optimizaci´on multiobjetivo en la gesti´on de cadenas de suministro de biocombustibles. Una revisi´on de la literatura. Ingenieria.
dcterms.referencesPuerto, J., Ricca, F., & Scozzari, A. (2018). Extensive facility location problems on networks: An updated review. TOP, 26(2), 187–226. https://doi.org/10.1007/s11750-018-0476-5
dcterms.referencesReporte Nacional de Competitividad Colombia 2021 2022. (2021).
dcterms.referencesRiahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. https://doi.org/10.1016/j.eswa.2021.114702
dcterms.referencesRouhiolyaee, F., Ebrahimi, S. B., & Afrasiabi, M. N. (2016). Utilizing Decision Making Methods and Optimization Techniques to Develop a Model for International Facility Location Problem under Uncertainty. 29(1), 10
dcterms.referencesRowley, J., & Slack, F. (2004). Conducting a Literature Review. Management Research News, 27(6).
dcterms.referencesRozhkov, M., Ivanov, D., Blackhurst, J., & Nair, A. (2022). Adapting supply chain operations in anticipation of and during the COVID19 pandemic 2022. Omega, 17.
dcterms.referencesSaeed, M., & Kersten, W. (2019). Drivers of Sustainable Supply Chain Management: Identification and Classification. Sustainability, 11(4), 1137. https://doi.org/10.3390/su11041137
dcterms.referencesSahin, G., & Sural, H. (2005). A review of hierarchical facility location models. Computers & Operations Research, 34.
dcterms.referencesSainz-Pardo, J. L. (2016). Problemas de localizacion de instalaciones no fiables. Universidad Miguel Hernandez de Elche.
dcterms.referencesSajjad, A. (2021). The COVID-19 pandemic, social sustainability and global supply chain resilience: A review. Corporate Governance: The International Journal of Business in Society, 21(6), 1142–1154. https://doi.org/10.1108/CG-12-2020-0554
dcterms.referencesSaldanha da Gama, F., Contreras, I., & Correia, I. (2019). Location Science (1st ed. 2015). Springer International Publishing : Imprint: Springer. https://doi.org/10.1007/978-3-319- 13111-5
dcterms.referencesSalemi, H. (2016). A hybrid algorithm for stochastic single-source capacitated facility location problem with service level requirements. International Journal of Industrial Engineering Computations, 14.
dcterms.referencesSantiváñez, J. A., & Carlo, H. J. (2018). Reliable capacitated facility location problem with service levels. EURO Journal on Transportation and Logistics, 7(4), 315–341. https://doi.org/10.1007/s13676-018-0125-z
dcterms.referencesSeuring, S., & Gold, S. (2012). Conducting content‐analysis based literature reviews in supply chain management. Supply Chain Management: An International Journal, 17(5), 544– 555. https://doi.org/10.1108/13598541211258609
dcterms.referencesSeyedhosseini, S. M., Makui, A., Shahanaghi, K., & Torkestani, S. S. (2016). Models, solution, methods and their applicability of dynamic location problems (DLPs) (a gap analysis for further research). Journal of Industrial Engineering International, 12(3), 311–341. https://doi.org/10.1007/s40092-016-0150-1
dcterms.referencesShen, Z.-J. M., Zhan, R. L., & Zhang, J. (2011). The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms. INFORMS Journal on Computing, 23(3), 470–482. https://doi.org/10.1287/ijoc.1100.0414
dcterms.referencesShu, J. (2015). Warehouse location and two-echelon inventory management with concave operating cost. International Journal of Production Research, 13.
dcterms.referencesSibel, A. (2015). Location Science (G. Laporte, S. Nickel, & F. Saldanha da Gama, Eds.; 1st ed. 2015). Springer International Publishing : Imprint: Springer. https://doi.org/10.1007/978- 3-319-13111-5
dcterms.referencesSimic, D., Ilin, V., Tanackov, I., Svircevic, V., & Simic, S. (2015). A Hybrid Analytic Hierarchy Process for Clustering and Ranking Best Location for Logistics Distribution Center. Springer International Publishing
dcterms.referencesSnyder, L. V. (2007). Facility location under uncertainty: A review. 19
dcterms.referencesSnyder, L. V., & Daskin, M. S. (2005). Reliability Models for Facility Location: The Expected Failure Cost Case. Transportation Science, 17.
dcterms.referencesSpiceLogic. (2023). Analytic Hierarchy Process—(AHP software). https://www.spicelogic.com/Products/ahp-software-30
dcterms.referencesSrinivasan, R. (2018). Supply Chain Risk Management (Y. Khojasteh, Ed.). Springer Singapore. https://doi.org/10.1007/978-981-10-4106-8
dcterms.referencesSun, X., Wu, C.-C., & Chen, L.-R. (2018). Applying analytic hierarchy process to solve distribution center location based on CFLP model. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1823–1827. https://doi.org/10.1109/ITNEC.2017.8285110
dcterms.referencesSzczepański, E., Jachimowski, R., Izdebski, M., & Jacyna-Gołda, I. (2019). WAREHOUSE LOCATION PROBLEM IN SUPPLY CHAIN DESIGNING: A SIMULATION ANALYSIS. Archives of Transport, 10.
dcterms.referencesTang, X. (2016). Location of distribution centers in a multi-period collaborative distribution network. Electronic Notes in Discrete Mathematics, 8.
dcterms.referencesTang, X., & Zhang, J. (2015). The Multi-objective Capacitated Facility Location Problem for Green Logistics. 6.
dcterms.referencesTerouhid, S. A., Ries, R., & Fard, M. M. (2012). Towards Sustainable Facility Location – A Literature Review. Journal of Sustainable Development, 5(7), 18.
dcterms.referencesTordecilla, R. D., Juan, A. A., Montoya Torres, J. R., & Quintero-Araujo, C. (2021). Simulationoptimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios_ A review. Simulation Modelling Practice and Theory, 23
dcterms.referencesUniandes, Min. T. C. (2023). Tablero de indicadores | Red Giro Zero. https://girozero.uniandes.edu.co/herramientas/dashboard
dcterms.referencesVan Duren, B. (2019). A Structured decision upon the most optimal distribution network in South America for PACCAR Parts.pdf. Tilburg Univertity
dcterms.referencesWasiak, M., Jacyna-Gołda, I., & Izdebski, M. (2016). MULTI-CRITERIA WAREHOUSES LOCATION PROBLEM IN THE LOGISTICS NETWORK. Conference Proceedings, 12.
dcterms.referencesXu, Y., Peng, J., & Xu, Y. (2018). The mixed center location problem. J Comb Optim, 17.
dcterms.referencesXu, Z., Elomri, A., Pokharel, S., & Mutlu, F. (2019). The Design of Green Supply Chains under Carbon Policies: A Literature Review of Quantitative Models. 20.
dcterms.referencesYang, K. (2015). Developing equilibrium optimization methods for hub location problems. 17.
dcterms.referencesYang, X.-S. (2014). Multi-Objective Optimization. En Nature-Inspired Optimization Algorithms (First Edition). Elsevier Ltd.
dcterms.referencesYou, M. (2019). Optimal mathematical programming for the warehouse location problem with Euclidean distance linearization. Industrial Engineering, 10
dcterms.referencesYu, G. (2017). Resilient facility location against the risk of disruptions. 24
dcterms.referencesYu, G., Haskell, W. B., & Liu, Y. (2017). Resilient facility location against the risk of disruptions. Transportation Research Part B: Methodological, 104, 82–105. https://doi.org/10.1016/j.trb.2017.06.014
dcterms.referencesYun, L. (2015). A reliability model for facility location design under imperfect information. 20.
dcterms.referencesZahedi, F. (2016). The Analytic Hierarchy Process—A Survey of the Method and its Applications. 15.
dcterms.referencesZhang, Y. (2016). The competitive facility location problem under disruption risks. 21
dcterms.referencesZhen, L., Wang, W., & Zhuge, D. (2017). Optimizing Locations and Scales of Distribution Centers Under Uncertainty. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(11), 2908–2919. https://doi.org/10.1109/TSMC.2016.2531696
thesis.degree.disciplineEscuela Internacional de Ciencias Económicas y Administrativases_CO
thesis.degree.levelMaestría en Gerencia de Operacioneses_CO
thesis.degree.nameMagíster en Gerencia de Operacioneses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional