Mostrar el registro sencillo del ítem

dc.contributor.advisorMohr, Felix
dc.contributor.authorGalvis Moncaleano, Enrique A.
dc.date.accessioned2024-02-26T13:37:59Z
dc.date.available2024-02-26T13:37:59Z
dc.date.issued2023-10-20
dc.identifier.urihttp://hdl.handle.net/10818/59300
dc.description66 páginases_CO
dc.description.abstractLa tasa de abandono o Churn se constituye como uno de los más grandes problemas en los negocios masivos de las compañías financieras en Colombia. Toda vez que es mucho más costoso vincular o atraer un nuevo cliente que retener o mantener los ya existentes, se deben crear e implementar estrategias que logren de manera proactiva predecirla y prevenirla, permitiendo a su vez activar campañas comerciales de fidelización y retención de clientes maximizando así la generación de valor. Con el rápido crecimiento de los sistemas computacionales, las tecnologías de la información asociadas a la transformación digital y la inteligencia artificial, existe una marcada tendencia en las industrias de construcción de sistemas inteligentes y automáticos de gestión para relacionarse con los clientes. Esta tendencia es indiscutible en la actual industria financiera. La predicción de la cancelación de los clientes es una tarea principal de las compañías financieras modernas, conocer el comportamiento futuro de los clientes permite gestionar las relaciones con ellos de manera efectiva y así poder responder a la continua reducción de ingresos en los estados de resultados de las empresas y a la cada vez mayor presión competitiva de los participantes del mercado. Este trabajo propone desarrollar un modelo para predecir la cancelación de los clientes que adquieren un seguro voluntario y propone el uso de diferentes algoritmos de aprendizaje automático para lograr este fin. Adicionalmente, se utilizan algunas técnicas de minería de datos de uso común para la identificación de clientes que están a punto de abandonar basándose en datos históricos, estos métodos intentan encontrar patrones que puedan identificar posibles abandonos. La explotación de información, el aprendizaje automático y la minería de datos son fundamentales para proporcionar patrones de conocimiento sobre estos clientes.es_CO
dc.description.abstractThe Churn rate is one of the biggest problems in the massive business of financial companies in Colombia. Since it is much more expensive to link or attract a new customer than to retain or maintain existing ones, the strategies must be created and implemented that proactively predict and prevent it, allowing in turn to activate commercial campaigns for customer loyalty and retention, maximizing thus the generation of value. With the rapid growth of computer systems, information technologies associated with digital transformation and artificial intelligence, there is a marked trend in the industries for the construction of intelligent and automatic management systems to interact with customers. This trend is indisputable in today's financial industry. Predicting the cancellation of clients is a main task of modern financial companies, knowing the future behavior of clients makes it possible to manage relationships with them effectively and thus be able to respond to the continuous reduction in income in the income statements of companies and increasing competitive pressure from market participants. This work proposes to develop a model to predict the churn rate of customers who purchase voluntary insurance and the use of different machine learning algorithms to achieve this end. Additionally, some used data mining techniques are used for the identification of customers who are about to churn based on historical data, these methods try to find patterns that can identify abandonments. The exploitation of information, machine learning and data mining are essential to provide patterns of knowledge about these customers.en
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherAprendizaje automático
dc.subject.otherPredicción
dc.subject.otherCurva ROC
dc.titleModelo de Churn para retención de clientes de Seguros Voluntarioses_CO
dc.typemaster thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dcterms.referencesDawkins, P.M. and Reichheld, F.F. (1990) Customer retention as a competitive weapon. Directors & Board Summer, 42-7.
dcterms.referencesScriney, M., Nie, D., & Roantree, M. (2020). Predicting Customer Churn for Insurance Data. En M. Song, I.-Y. Song, G. Kotsis, A. M. Tjoa, & I. Khalil (Eds.), Big Data Analytics and Knowledge Discovery (pp. 256-265). Springer International Publishing. https://doi.org/10.1007/978-3-030-59065-9_21
dcterms.referencesMorik and K¨opcke (2014, septiembre 12). Analysing Customer Churn in Insurance Data – A Case Study. Knowledge Discovery in Databases: PKDD 2004 Springer, pp. 325-336.
dcterms.referencesSiemes, T. (2016, noviembre 16). Churn prediction models tested and evaluated in the Dutch indemnity industry [Tesis de pregrado]. Open University of the Netherlands Faculty Management, Science and Technology, Netherlands
dcterms.referencesKingawa, E. D., & Hailu, T. T. (2022). Customer Churn Prediction Using Machine Learning Techniques: The case of Lion Insurance. Asian Journal of Basic Science & Research, 04(04), 60-73. https://doi.org/10.38177/AJBSR.2022.4407
dcterms.referencesSahand Khakabi, Mohammad R. Gholamian, and Morteza Namvar. Data Mining Applications in Customer Churn Management. 2010 International Conference on Intelligent Systems, Modelling and Simulation, January 2010
dcterms.referencesGünther, C. C., Tvete, I. F., Aas, K., Sandnes, G. I., & Borgan, Ø. (2014). Modelling and predicting customer churn from an insurance company. Scandinavian Actuarial Journal, 2014(1), 58-71.
dcterms.referencesSoeini, R. A., & Rodpysh, K. V. (2012). Applying data mining to insurance customer churn management. Int. Proc. Comput. Sci. Inf. Technol, 30, 82-92
dcterms.referencesKuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). New York: Springer, 522,523.
dcterms.referencesTsiptsis, K. K., & Chorianopoulos, A. (2011). Data mining techniques in CRM: inside customer segmentation. John Wiley & Sons
dcterms.referencesJapkowicz, N. (2003, August). Class imbalances: are we focusing on the right issue. In Workshop on Learning from Imbalanced Data Sets II (Vol. 1723, p. 63).
dcterms.referencesVisa, S., & Ralescu, A. (2005, April). Issues in mining imbalanced data setsa review paper In Proceedings of the sixteen midwest artificial intelligence and cognitive science conference (Vol. 2005, pp. 67-73). sn.
dcterms.referencesFawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
dcterms.referencesStaudt, M., Kietz, J. U., & Reimer, U. (1998, August). A Data Mining Support Environment and its Application on Insurance Data. In KDD (pp. 105-111).
dcterms.referencesJames, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
dcterms.referencesGuillen, M., Nielsen, J. P., & Pérez-Marín, A. M. (2008). The need to monitor customer loyalty and business risk in the European insurance industry. The Geneva Papers on Risk and Insurance-Issues and Practice, 33(2), 207-218
dcterms.referencesGuillén, M., Nielsen, J. P., Scheike, T. H., & Pérez-Marín, A. M. (2012). Timevarying effects in the analysis of customer loyalty: A case study in insurance. Expert systems with Applications, 39(3), 3551-3558.
dcterms.referencesNeslin, S. A., Gupta, S., Kamakura, W., Lu, J., & Mason, C. H. (2006). Defection detection: Measuring and understanding the predictive accuracy of customer churn models. Journal of marketing research, 43(2), 204-211
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Analítica Aplicadaes_CO
thesis.degree.nameMagíster en Analítica Aplicadaes_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional