Mostrar el registro sencillo del ítem
Mejora de la gestión de recursos en el Banco de Alimentos de Bogotá: Predicción de donaciones y optimización de la logística de entrega.
dc.contributor.advisor | Mejía Delgadillo, Gonzalo Enrique | |
dc.contributor.advisor | Da Silva Ovando, Agatha Clarice | |
dc.contributor.author | Arroyo Arévalo, Luz Helena | |
dc.contributor.author | Castellanos Guarnizo, Alejandra Milena | |
dc.contributor.author | Reina Diaz, Viviana | |
dc.date.accessioned | 2024-01-22T13:43:27Z | |
dc.date.available | 2024-01-22T13:43:27Z | |
dc.date.issued | 2023-10-21 | |
dc.identifier.uri | http://hdl.handle.net/10818/59138 | |
dc.description | 86 páginas | es_CO |
dc.description.abstract | Los bancos de alimentos son entidades que ayudan a las poblaciones vulnerables que sufren desnutrición y falta de seguridad alimentaria, Banco de alimentos de Bogotá (2023). | es_CO |
dc.description.sponsorship | Alimentos -- Análisis | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Mejora de la gestión de recursos en el Banco de Alimentos de Bogotá: Predicción de donaciones y optimización de la logística de entrega. | es_CO |
dc.type | master thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.subject.armarc | Alimentos -- Aspectos sociales | |
dc.subject.armarc | Abastecimiento de alimentos | |
dc.subject.armarc | Planificación estratégica | |
dc.subject.armarc | Toma de decisiones | |
dc.subject.armarc | Oferta y demanda | |
dcterms.references | Baik, S. M., Hong, K. S., and Park, D. J. (2023). Deep learning approach for early prediction of covid-19 mortality using chest x-ray and electronic healthrecords. BMC Bioinformatics, 24. | |
dcterms.references | Bogotá and CómoVamos (2022). Desigualdad y pobreza, factores que explicaninseguridad alimentaria en bogotá. | |
dcterms.references | Box, G., Jenkins, G., and Reinsel, G. (1994). Time Series Analysis: ForecastingControl. 3 editions. | |
dcterms.references | Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and M, J. R. G. (2015). Timeseries analysis. | |
dcterms.references | DANE (2021). Comunicado de prensa, pobreza monetaria 2021. | |
dcterms.references | Davis, L. B., Jiang, S. X., Morgan, S. D., Nuamah, I. A., and Terry, J. R. (2016). Analysis and prediction of food donation behavior for a domestic hunger relief organization. International Journal of Production Economics, 182:26–37. | |
dcterms.references | Davis, R. A. and Brockwell, P. J. (2016). Introduction to Time Series and Forecasting. SpringerLink. | |
dcterms.references | Davis, R. A. and Brockwell, P. J. (2016). Introduction to Time Series and Forecasting. SpringerLink. | |
dcterms.references | FAO (2022). Hambre e inseguridad alimentaria | |
dcterms.references | Haya, P. (2021). La metodología crisp-dm en ciencia de datos. | |
dcterms.references | Hyndman, R. and Athanasopoulos, G. (2018). Forecasting: Principles andPractice. OTexts | |
dcterms.references | Hyndman, R., Koehler, A., Ord, K., and Snyder, R. (2008). Forecasting withExponential Smoothing. | |
dcterms.references | Lv, C. X., An, S. Y., Qiao, B. J., and Wu, W. (2021). Time series analysis of hemorrhagic fever with renal syndrome in mainland china by using anxgboost forecasting model. BMC Infectious Diseases, 21. | |
dcterms.references | Nuamah, I. A., Davis, L., Jiang, S., and Lane, N. (2015). PREDICTING DONATIONS USING A FORECASTING-SIMULATION MODEL. | |
dcterms.references | Odubela, K., Jiang, S., and Davis, L. (2020). Estimating true demand at a localhunger relief organization. | |
dcterms.references | Odubela, K., Jiang, S., Delpish, R., and Davis, L. (2019). Effect of underlying factors on food distribution forecasts using visual analytics | |
dcterms.references | Paul, S. and Davis, L. B. (2019). Predicting food donor contribution behavior using support vector regression. | |
dcterms.references | Paul, S. and Davis, L. B. (2022). An ensemble forecasting model for predictingcontribution of food donors based on supply behavior. Annals of Operations Research, 319:1–29. | |
dcterms.references | Peng, N., Zhou, X., Niu, B., and Feng, Y. (2021). Predicting fundraising performance in medical crowdfunding campaigns using machine learning.Electronics, 10:143. | |
dcterms.references | Rojas, J. (2023). Desarrollo de un modelo de Machine Learning para la clasificaci´on de tipos de dengue de acuerdo a su nivel de severidad: Un estudio de caso de Bucaramanga, Colombia. Universidad El Bosque. | |
dcterms.references | Rodrigo, J. A. and Ortiz, J. E. (2021). Forecasting time series with gradientboosting: Skforecast, xgboost, lightgbm y catboost | |
dcterms.references | Rpubs (2022). Introducción modelo sarimax. | |
dcterms.references | Sharma, E., Davis, L., Ivy, J., and Chi, M. (2021). Data to donations: Towardsin-kind food donation prediction across two coasts. | |
dcterms.references | Wang, S. M., Ma, J. H., Zhao, Z. M., Yang, H. Z. Y., Xuan, Y. M., Ouyang, J. X., Fan, D. M., Yu, J. F., and Wang, X. C. (2023). Pixel-class prediction for nitrogen content of tea plants based on unmanned aerial vehicle images usingmachine learning and deep learning. Expert Systems with Applications, 227. | |
dcterms.references | WFP (2023). La inseguridad alimentaria moderada y severa en colombia alcanza el 30 | |
dcterms.references | Alhindi, A., Alsaidi, A., & Munshi, A. (2022). Vehicle Routing Optimization for Non Profit Organization Systems. Information, 2-11. doi:https://doi.org/10.3390/info13080374 | |
dcterms.references | Arthur David, V. S. (2007). k-means++: The Advantages of Careful Seeding. 1027- 1035. | |
dcterms.references | Ashwathy Devraj, P. V. (2019). K-Means Clustering - An Access to Overcome Uncertainty in Data Clustering of Distributed Networks. International Journal of Innovative Technology and Exploring Engineering, 210-213. Obtenido de https://doi.org/10.35940/ijitee.K1043.09811S1 | |
dcterms.references | Başdere, M. (2019). Heuristics in Optimization. Obtenido de Medium: https://medium.com/opex-analytics/heuristics-in-optimization-41c842888ec8 | |
dcterms.references | Calvet, L., Ferrer, A., Gomes, M. I., Juan, A., & Masip, D. (2016). Combining statistical learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with market segmentation. Computers & Industrial Engineering, 93- 105. doi:http://dx.doi.org/10.1016/j.cie.2016.01.016 | |
dcterms.references | Calvet, L., Ferrer, A., Gomes, M. I., Juan, A., & Masip, D. (2016). Combining statistical learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with market segmentation. Computers & Industrial Engineering, 93- 105. doi:http://dx.doi.org/10.1016/j.cie.2016.01.016 | |
dcterms.references | Coene, S., & Arnout, A. (2010). On a periodic vehicle routing problem. Journal of the Operational Research Society, 1719-1728. doi:10.1057/jors.2009.154 | |
dcterms.references | Comert, S., Yazgan, H., Kır, S., & Yener, F. (2018). A cluster first-route second approach for a capacitated vehicle routing problem: a case study. Procurement Management, 399-415. | |
dcterms.references | D.J. Nair, H. G. (2017). Scheduling and routing models for food rescue and delivery operations. Socio-Economic Planning Sciences, 18-32. Obtenido de http://dx.doi.org/10.1016/j.seps.2017.06.003 | |
dcterms.references | Davis, L., Sengul, I., Ivy, J., Brock III, L., & Miles, L. (2014). Scheduling food bank collections and deliveries to ensure food safety and improve access. Socio Economic Planning Sciences, 175-188. doi:http://dx.doi.org/10.1016/j.seps.2014.04.001 | |
dcterms.references | Daza, J. M., Montoya, J. R., & Narducci, F. (2009). Resolución del problema de enrutamiento de vehículos con limitaciones de capacidad utilizando un procedimiento metaheurístico de dos fases. EIA, 25-26. | |
dcterms.references | Desrochers, M. D. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 342-354. | |
dcterms.references | Divya Jayakumar Nair, H. G. (2016). Food Rescue and Delivery Heuristic Algorithm for Periodic Unpaired Pickup and Delivery Vehicle Routing Problem. Transportation Research Board, 81-89. doi:DOI: 10.3141/2548-10 | |
dcterms.references | Forsberg, E., & Nordqvist, G. (2023). Heuristic Clustering Methods for Solving Vehicle Routing Problems. Obtenido de http://kth.diva portal.org/smash/get/diva2:1780176/FULLTEXT01.pdf | |
dcterms.references | Francis, P. M., Smilowitz, K. R., & Tzur, M. (2008). The Period Vehicle Routing Problem and its Extensions. En B. Golden, S. Raghavan, & E. Wasil, The Vehicle Routing Problem Latest Advances and New Challenges (págs. 77- 82). New York: Springer. doi:10 .1007/ 978-0-387-77778-8 | |
dcterms.references | G. B. Dantzig, J. H. (1959). The Truck Dispatching Problem. Management Science, 80–91. doi:https://doi.org/10.1287/mnsc.6.1.80 | |
dcterms.references | G. Clarke, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research, 568-581. doi:10.1287/opre.12.4.568 | |
dcterms.references | Gilbert Laporte, Y. N. (1985). Optimal Routing under Capacity and Distance Restrictions. Operations Research, 1050–1073. doi:https://doi.org/10.1287/opre.33.5.1050 | |
dcterms.references | Google. (2015). OR-Tools. Obtenido de OR-Tools: https://developers.google.com/optimization/ | |
dcterms.references | Granillo, R. (2020). Logistics optimization through a social approach for food distribution. Socio-Economic Planning Sciences, 2-9. doi:https://doi.org/10.1016/j.seps.2020.100972 | |
dcterms.references | Kellie Schneider, S. G. (2018). A multi-criteria vehicle routing approach to improve the compliance audit schedule for food banks. Omega, 127-140. Obtenido de https://doi.org/10.1016/j.omega.2018.05.002 | |
dcterms.references | Kesy, A., & Rohmatul, N. (2019). A Cluster-First Route-Second Heuristic Approach to Solve Periodic Multi-Trip Vehicle Routing Problem. Jurnal Teknik Industri, 172-181. doi:https://doi.org/10.22219/JTIUMM.Vol20.No2.172-181 | |
dcterms.references | Määttä, P. (2021). Comparison of solution methods for the dynamic pickup and delivery problem with time windows. Obtenido de https://sal.aalto.fi/publications/pdf-files/theses/mas/tmaa21_public.pdf | |
dcterms.references | N. A. A. Ibrahim, L. J. (2019). Capacitated vehicle routing problem. Int. J. Res. - GRANTHAALAYAH 7, 310-327. doi:http://dx.doi.org/10.29121/ | |
dcterms.references | Nasser R. Sabar, A. B. (2018). A self-adaptive evolutionary algorithm for dynamic vehicle routing problems with traffic congestion. Swarm and Evolutionary Computation, 1020-1027. doi:https://doi.org/10.1016/j.swevo.2018.10.015 | |
dcterms.references | OpenStreetMap contributors. (2017). Obtenido de https://www.openstreetmap.org. | |
dcterms.references | P. Toth, D. V. (2002). Branch-and-bound algorithms for the capacitated VRP in The Vehicle Routing Problem,. Society for Industrial and Applied Mathematics, 29- 51. Obtenido de http://dx.doi.org/10.1137/1.9780898718515.ch2. | |
dcterms.references | Panicker, V., & Ihsan, M. (2018). Solving a Heterogeneous Fleet Vehicle Routing Model - A practical approach. international conference on system, computation, automation and networking (págs. 1-5). IEEE. doi:10.1109/ICSCAN.2018.8541149 | |
dcterms.references | Pranavi Singanamala, D. .. (2018). Solution to a Multi Depot Vehicle Routing Problem Using K-means Algorithm, Clarke and Wright Algorithm and Ant Colony Optimization. Research India Publications., 15236-15246. | |
dcterms.references | Python. (2023). Python Download portal. Obtenido de https://www.python.org/downloads/ | |
dcterms.references | QGIS Development Team. (2009). QGIS Geographic Information System. Obtenido de Open Source Geospatial Foundation: http://qgis.osgeo.org | |
dcterms.references | Salezze, B., Mattos, G., & Bahiense, L. (2023). Metaheuristics with variable diversity control and neighborhood search for the Heterogeneous Site-Dependent Multi-depot Multi-trip Periodic Vehicle Routing Problem. Computers & Operations Research, 2-22. doi:https://doi.org/10.1016/j.cor.2023.106189 | |
dcterms.references | Schotman, K. (2022). Optimizing transportation in the network of food banks in the region of Twente-Salland based on the Vehicle Routing Problem. Obtenido de http://essay.utwente.nl/92657/1/Schotman_MA_BMS.pdf | |
dcterms.references | Secretaria Distrital de Movilidad. (2022). Datos Abiertos Secretaría Distrital de Movilidad. Obtenido de https://datos.movilidadbogota.gov.co/datasets/movilidadbogota::velocidades -bitcarrier-noviembre-2022/explore | |
dcterms.references | Singh, B., Oberfichtner, L., & Ivliev, S. (2023). Heuristics for a cash-collection routing problem with a cluster-first route-second approach. Annals of Operations Research, 413-440. doi:https://doi.org/10.1007/s10479-022-04883-1 | |
dcterms.references | Taşkın, C. Z. (2022). Optimization vs. heuristics: Which is the right approach for your business? Obtenido de ICRON: https://www.icrontech.com/blog_item/optimization-vs-heuristics-which-is-the right-approach-for-your-busines | |
dcterms.references | Ufuk Dereci, M. E. (2022). The applications of multiple route optimization heuristics and meta-heuristic algorithms to solid waste transportation: A case study in Turkey. Decision Analytics Journal 4 , 2-12. doi:https://doi.org/10.1016/j.dajour.2022.100113 | |
dcterms.references | Yuanzhi Jin, X. G. (2022). A two-stage algorithm for bi-objective logistics model of cash-in-transit. Journal of Industrial Information Integration, 5-10. doi:https://doi.org/10.1016/j.jii.2021.100273 | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Analítica Aplicada | es_CO |
thesis.degree.name | Magíster en Analítica Aplicada | es_CO |