Mostrar el registro sencillo del ítem

dc.contributor.advisorMejía Delgadillo, Gonzalo Enrique
dc.contributor.advisorDa Silva Ovando, Agatha Clarice
dc.contributor.authorArroyo Arévalo, Luz Helena
dc.contributor.authorCastellanos Guarnizo, Alejandra Milena
dc.contributor.authorReina Diaz, Viviana
dc.date.accessioned2024-01-22T13:43:27Z
dc.date.available2024-01-22T13:43:27Z
dc.date.issued2023-10-21
dc.identifier.urihttp://hdl.handle.net/10818/59138
dc.description86 páginases_CO
dc.description.abstractLos bancos de alimentos son entidades que ayudan a las poblaciones vulnerables que sufren desnutrición y falta de seguridad alimentaria, Banco de alimentos de Bogotá (2023).es_CO
dc.description.sponsorshipAlimentos -- Análisises_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMejora de la gestión de recursos en el Banco de Alimentos de Bogotá: Predicción de donaciones y optimización de la logística de entrega.es_CO
dc.typemaster thesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcAlimentos -- Aspectos sociales
dc.subject.armarcAbastecimiento de alimentos
dc.subject.armarcPlanificación estratégica
dc.subject.armarcToma de decisiones
dc.subject.armarcOferta y demanda
dcterms.referencesBaik, S. M., Hong, K. S., and Park, D. J. (2023). Deep learning approach for early prediction of covid-19 mortality using chest x-ray and electronic healthrecords. BMC Bioinformatics, 24.
dcterms.referencesBogotá and CómoVamos (2022). Desigualdad y pobreza, factores que explicaninseguridad alimentaria en bogotá.
dcterms.referencesBox, G., Jenkins, G., and Reinsel, G. (1994). Time Series Analysis: ForecastingControl. 3 editions.
dcterms.referencesBox, G. E. P., Jenkins, G. M., Reinsel, G. C., and M, J. R. G. (2015). Timeseries analysis.
dcterms.referencesDANE (2021). Comunicado de prensa, pobreza monetaria 2021.
dcterms.referencesDavis, L. B., Jiang, S. X., Morgan, S. D., Nuamah, I. A., and Terry, J. R. (2016). Analysis and prediction of food donation behavior for a domestic hunger relief organization. International Journal of Production Economics, 182:26–37.
dcterms.referencesDavis, R. A. and Brockwell, P. J. (2016). Introduction to Time Series and Forecasting. SpringerLink.
dcterms.referencesDavis, R. A. and Brockwell, P. J. (2016). Introduction to Time Series and Forecasting. SpringerLink.
dcterms.referencesFAO (2022). Hambre e inseguridad alimentaria
dcterms.referencesHaya, P. (2021). La metodología crisp-dm en ciencia de datos.
dcterms.referencesHyndman, R. and Athanasopoulos, G. (2018). Forecasting: Principles andPractice. OTexts
dcterms.referencesHyndman, R., Koehler, A., Ord, K., and Snyder, R. (2008). Forecasting withExponential Smoothing.
dcterms.referencesLv, C. X., An, S. Y., Qiao, B. J., and Wu, W. (2021). Time series analysis of hemorrhagic fever with renal syndrome in mainland china by using anxgboost forecasting model. BMC Infectious Diseases, 21.
dcterms.referencesNuamah, I. A., Davis, L., Jiang, S., and Lane, N. (2015). PREDICTING DONATIONS USING A FORECASTING-SIMULATION MODEL.
dcterms.referencesOdubela, K., Jiang, S., and Davis, L. (2020). Estimating true demand at a localhunger relief organization.
dcterms.referencesOdubela, K., Jiang, S., Delpish, R., and Davis, L. (2019). Effect of underlying factors on food distribution forecasts using visual analytics
dcterms.referencesPaul, S. and Davis, L. B. (2019). Predicting food donor contribution behavior using support vector regression.
dcterms.referencesPaul, S. and Davis, L. B. (2022). An ensemble forecasting model for predictingcontribution of food donors based on supply behavior. Annals of Operations Research, 319:1–29.
dcterms.referencesPeng, N., Zhou, X., Niu, B., and Feng, Y. (2021). Predicting fundraising performance in medical crowdfunding campaigns using machine learning.Electronics, 10:143.
dcterms.referencesRojas, J. (2023). Desarrollo de un modelo de Machine Learning para la clasificaci´on de tipos de dengue de acuerdo a su nivel de severidad: Un estudio de caso de Bucaramanga, Colombia. Universidad El Bosque.
dcterms.referencesRodrigo, J. A. and Ortiz, J. E. (2021). Forecasting time series with gradientboosting: Skforecast, xgboost, lightgbm y catboost
dcterms.referencesRpubs (2022). Introducción modelo sarimax.
dcterms.referencesSharma, E., Davis, L., Ivy, J., and Chi, M. (2021). Data to donations: Towardsin-kind food donation prediction across two coasts.
dcterms.referencesWang, S. M., Ma, J. H., Zhao, Z. M., Yang, H. Z. Y., Xuan, Y. M., Ouyang, J. X., Fan, D. M., Yu, J. F., and Wang, X. C. (2023). Pixel-class prediction for nitrogen content of tea plants based on unmanned aerial vehicle images usingmachine learning and deep learning. Expert Systems with Applications, 227.
dcterms.referencesWFP (2023). La inseguridad alimentaria moderada y severa en colombia alcanza el 30
dcterms.referencesAlhindi, A., Alsaidi, A., & Munshi, A. (2022). Vehicle Routing Optimization for Non Profit Organization Systems. Information, 2-11. doi:https://doi.org/10.3390/info13080374
dcterms.referencesArthur David, V. S. (2007). k-means++: The Advantages of Careful Seeding. 1027- 1035.
dcterms.referencesAshwathy Devraj, P. V. (2019). K-Means Clustering - An Access to Overcome Uncertainty in Data Clustering of Distributed Networks. International Journal of Innovative Technology and Exploring Engineering, 210-213. Obtenido de https://doi.org/10.35940/ijitee.K1043.09811S1
dcterms.referencesBaşdere, M. (2019). Heuristics in Optimization. Obtenido de Medium: https://medium.com/opex-analytics/heuristics-in-optimization-41c842888ec8
dcterms.referencesCalvet, L., Ferrer, A., Gomes, M. I., Juan, A., & Masip, D. (2016). Combining statistical learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with market segmentation. Computers & Industrial Engineering, 93- 105. doi:http://dx.doi.org/10.1016/j.cie.2016.01.016
dcterms.referencesCalvet, L., Ferrer, A., Gomes, M. I., Juan, A., & Masip, D. (2016). Combining statistical learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with market segmentation. Computers & Industrial Engineering, 93- 105. doi:http://dx.doi.org/10.1016/j.cie.2016.01.016
dcterms.referencesCoene, S., & Arnout, A. (2010). On a periodic vehicle routing problem. Journal of the Operational Research Society, 1719-1728. doi:10.1057/jors.2009.154
dcterms.referencesComert, S., Yazgan, H., Kır, S., & Yener, F. (2018). A cluster first-route second approach for a capacitated vehicle routing problem: a case study. Procurement Management, 399-415.
dcterms.referencesD.J. Nair, H. G. (2017). Scheduling and routing models for food rescue and delivery operations. Socio-Economic Planning Sciences, 18-32. Obtenido de http://dx.doi.org/10.1016/j.seps.2017.06.003
dcterms.referencesDavis, L., Sengul, I., Ivy, J., Brock III, L., & Miles, L. (2014). Scheduling food bank collections and deliveries to ensure food safety and improve access. Socio Economic Planning Sciences, 175-188. doi:http://dx.doi.org/10.1016/j.seps.2014.04.001
dcterms.referencesDaza, J. M., Montoya, J. R., & Narducci, F. (2009). Resolución del problema de enrutamiento de vehículos con limitaciones de capacidad utilizando un procedimiento metaheurístico de dos fases. EIA, 25-26.
dcterms.referencesDesrochers, M. D. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations Research, 342-354.
dcterms.referencesDivya Jayakumar Nair, H. G. (2016). Food Rescue and Delivery Heuristic Algorithm for Periodic Unpaired Pickup and Delivery Vehicle Routing Problem. Transportation Research Board, 81-89. doi:DOI: 10.3141/2548-10
dcterms.referencesForsberg, E., & Nordqvist, G. (2023). Heuristic Clustering Methods for Solving Vehicle Routing Problems. Obtenido de http://kth.diva portal.org/smash/get/diva2:1780176/FULLTEXT01.pdf
dcterms.referencesFrancis, P. M., Smilowitz, K. R., & Tzur, M. (2008). The Period Vehicle Routing Problem and its Extensions. En B. Golden, S. Raghavan, & E. Wasil, The Vehicle Routing Problem Latest Advances and New Challenges (págs. 77- 82). New York: Springer. doi:10 .1007/ 978-0-387-77778-8
dcterms.referencesG. B. Dantzig, J. H. (1959). The Truck Dispatching Problem. Management Science, 80–91. doi:https://doi.org/10.1287/mnsc.6.1.80
dcterms.referencesG. Clarke, J. W. (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research, 568-581. doi:10.1287/opre.12.4.568
dcterms.referencesGilbert Laporte, Y. N. (1985). Optimal Routing under Capacity and Distance Restrictions. Operations Research, 1050–1073. doi:https://doi.org/10.1287/opre.33.5.1050
dcterms.referencesGoogle. (2015). OR-Tools. Obtenido de OR-Tools: https://developers.google.com/optimization/
dcterms.referencesGranillo, R. (2020). Logistics optimization through a social approach for food distribution. Socio-Economic Planning Sciences, 2-9. doi:https://doi.org/10.1016/j.seps.2020.100972
dcterms.referencesKellie Schneider, S. G. (2018). A multi-criteria vehicle routing approach to improve the compliance audit schedule for food banks. Omega, 127-140. Obtenido de https://doi.org/10.1016/j.omega.2018.05.002
dcterms.referencesKesy, A., & Rohmatul, N. (2019). A Cluster-First Route-Second Heuristic Approach to Solve Periodic Multi-Trip Vehicle Routing Problem. Jurnal Teknik Industri, 172-181. doi:https://doi.org/10.22219/JTIUMM.Vol20.No2.172-181
dcterms.referencesMäättä, P. (2021). Comparison of solution methods for the dynamic pickup and delivery problem with time windows. Obtenido de https://sal.aalto.fi/publications/pdf-files/theses/mas/tmaa21_public.pdf
dcterms.referencesN. A. A. Ibrahim, L. J. (2019). Capacitated vehicle routing problem. Int. J. Res. - GRANTHAALAYAH 7, 310-327. doi:http://dx.doi.org/10.29121/
dcterms.referencesNasser R. Sabar, A. B. (2018). A self-adaptive evolutionary algorithm for dynamic vehicle routing problems with traffic congestion. Swarm and Evolutionary Computation, 1020-1027. doi:https://doi.org/10.1016/j.swevo.2018.10.015
dcterms.referencesOpenStreetMap contributors. (2017). Obtenido de https://www.openstreetmap.org.
dcterms.referencesP. Toth, D. V. (2002). Branch-and-bound algorithms for the capacitated VRP in The Vehicle Routing Problem,. Society for Industrial and Applied Mathematics, 29- 51. Obtenido de http://dx.doi.org/10.1137/1.9780898718515.ch2.
dcterms.referencesPanicker, V., & Ihsan, M. (2018). Solving a Heterogeneous Fleet Vehicle Routing Model - A practical approach. international conference on system, computation, automation and networking (págs. 1-5). IEEE. doi:10.1109/ICSCAN.2018.8541149
dcterms.referencesPranavi Singanamala, D. .. (2018). Solution to a Multi Depot Vehicle Routing Problem Using K-means Algorithm, Clarke and Wright Algorithm and Ant Colony Optimization. Research India Publications., 15236-15246.
dcterms.referencesPython. (2023). Python Download portal. Obtenido de https://www.python.org/downloads/
dcterms.referencesQGIS Development Team. (2009). QGIS Geographic Information System. Obtenido de Open Source Geospatial Foundation: http://qgis.osgeo.org
dcterms.referencesSalezze, B., Mattos, G., & Bahiense, L. (2023). Metaheuristics with variable diversity control and neighborhood search for the Heterogeneous Site-Dependent Multi-depot Multi-trip Periodic Vehicle Routing Problem. Computers & Operations Research, 2-22. doi:https://doi.org/10.1016/j.cor.2023.106189
dcterms.referencesSchotman, K. (2022). Optimizing transportation in the network of food banks in the region of Twente-Salland based on the Vehicle Routing Problem. Obtenido de http://essay.utwente.nl/92657/1/Schotman_MA_BMS.pdf
dcterms.referencesSecretaria Distrital de Movilidad. (2022). Datos Abiertos Secretaría Distrital de Movilidad. Obtenido de https://datos.movilidadbogota.gov.co/datasets/movilidadbogota::velocidades -bitcarrier-noviembre-2022/explore
dcterms.referencesSingh, B., Oberfichtner, L., & Ivliev, S. (2023). Heuristics for a cash-collection routing problem with a cluster-first route-second approach. Annals of Operations Research, 413-440. doi:https://doi.org/10.1007/s10479-022-04883-1
dcterms.referencesTaşkın, C. Z. (2022). Optimization vs. heuristics: Which is the right approach for your business? Obtenido de ICRON: https://www.icrontech.com/blog_item/optimization-vs-heuristics-which-is-the right-approach-for-your-busines
dcterms.referencesUfuk Dereci, M. E. (2022). The applications of multiple route optimization heuristics and meta-heuristic algorithms to solid waste transportation: A case study in Turkey. Decision Analytics Journal 4 , 2-12. doi:https://doi.org/10.1016/j.dajour.2022.100113
dcterms.referencesYuanzhi Jin, X. G. (2022). A two-stage algorithm for bi-objective logistics model of cash-in-transit. Journal of Industrial Information Integration, 5-10. doi:https://doi.org/10.1016/j.jii.2021.100273
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Analítica Aplicadaes_CO
thesis.degree.nameMagíster en Analítica Aplicadaes_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional