Mostrar el registro sencillo del ítem

dc.contributor.advisorPaipa Galeano, Luis Alfredo
dc.contributor.authorAcaro Imaicela, Jonathan Andrés
dc.date.accessioned2023-05-09T14:42:13Z
dc.date.available2023-05-09T14:42:13Z
dc.date.issued2023-02-14
dc.identifier.urihttp://hdl.handle.net/10818/55229
dc.description61 páginases_CO
dc.description.abstractLa cuarta revolución industrial ya es un hecho y ahora las organizaciones buscan incorporar aspectos como el manejo de Big Data, computación en nube e internet de las cosas con el objetivo de fortalecer su oferta de valor. El presente proyecto se realizó para una empresa global que elabora y comercializa maquinaria de almacenamiento automático. Busca identificar cuál es el mejor modelo de mantenimiento predictivo a los datos recolectados por sensores en las máquinas. El mantenimiento predictivo consiste en predecir cuándo es el mejor momento para realizar un mantenimiento, de tal manera que se minimice los eventos de falla y el tiempo de reparación asociado. En los últimos años, esta organización ha transformado su oferta en un producto alineado al concepto de industria 4.0 y a través del presente proyecto se pretende seguir haciéndolo. A partir de los datos capturados por los sensores de máquinas en el campo y la metodología de aprendizaje de máquinas supervisado automatizado, se obtuvieron distintos modelos de clasificación. El preprocesamiento de datos requirió agrupación de los datos en ventanas de tiempo y técnicas de balanceo de clases. Los modelos obtenidos fueron evaluados con un conjunto de datos nuevo, el cual se obtuvo en un periodo de tiempo posterior a la extracción inicial de datos para entrenamiento. Entre los modelos recomendados se encontraron bosques aleatorios, árboles extremadamente aleatorios y boosting. El puntaje f1 fue utilizado para medir el desempeño de los modelos y se alcanzó un valor máximo de 0.4 en la validación final.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleTransformando sistemas automáticos de almacenamiento :Un primer enfoque de mantenimiento predictivo basado en algoritmos de clasificaciónes_CO
dc.typemaster thesises_CO
dc.identifier.local291661
dc.identifier.localTE12256
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.subject.armarcSistemas de recolección automática de datos
dc.subject.armarcMantenibilidad (Ingeniería)
dc.subject.armarcBig Data
dc.subject.armarcFábricas -- Mantenimiento y reparación
dcterms.referencesAmihai, I., Gitzel, R., Kotriwala, A. M., Pareschi, D., Subbiah, S., & Sosale, G. (2018). An industrial case study using vibration data and machine learning to predict asset health. Proceeding - 2018 20th IEEE International Conference on Business Informatics, CBI 2018, 1, 178–185. https://doi.org/10.1109/CBI.2018.00028
dcterms.referencesAndersen, D. L., Ashbrook, C. S. A., & Karlborg, N. B. (2020). Significance of big data analytics and the internet of things (IoT) aspects in industrial development, governance and sustainability. International Journal of Intelligent Networks, 1, 107–111. https://doi.org/10.1016/j.ijin.2020.12.003
dcterms.referencesAshima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S. K., & Singh, S. (2021). Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0. Materials Today: Proceedings, 45, 5081–5088. https://doi.org/10.1016/j.matpr.2021.01.583
dcterms.referencesAwan, U., Shamim, S., Khan, Z., Zia, N. U., Shariq, S. M., & Khan, M. N. (2021). Big data analytics capability and decision-making: The role of datadriven insight on circular economy performance. Technological Forecasting and Social Change, 168. https://doi.org/10.1016/j.techfore.2021.120766
dcterms.referencesAyvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing : A machine learning approach using IoT data in real-time. Expert Systems With Applications, 173(September 2020), 114598. https://doi.org/10.1016/j.eswa.2021.114598
dcterms.referencesBetti, A., Crisostomi, E., Paolinelli, G., Piazzi, A., Ruffini, F., & Tucci, M. (2021). Condition monitoring and predictive maintenance methodologies for hydropower plants equipment. Renewable Energy, 171, 246–253. https://doi.org/10.1016/j.renene.2021.02.102
dcterms.referencesBowler, A. L., Pound, M. P., & Watson, N. J. (2022). A review of ultrasonic sensing and machine learning methods to monitor industrial processes. In Ultrasonics (Vol. 124). Elsevier B.V. https://doi.org/10.1016/j.ultras.2022.106776
dcterms.referencesCerrada, M., Zurita, G., Cabrera, D., Sánchez, R. V., Artés, M., & Li, C. (2016). Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70–71, 87–103. https://doi.org/10.1016/j.ymssp.2015.08.030
dcterms.referencesChawla, N. v, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16).
dcterms.referencesCiancio, V., Homri, L., Dantan, J. Y., & Siadat, A. (2020). Towards prediction of machine failures: Overview and first attempt on specific automotive industry application. IFAC-PapersOnLine, 53(3), 289–294. https://doi.org/10.1016/j.ifacol.2020.11.047
dcterms.referencesDalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298
dcterms.referencesEinabady, B., Baboli, A., & Ebrahimiu, M. (2019). Dynamic Predictive Maintenance in industry based on real time information: Case study automotive industries. IFAC PapersOnLine, 52(13), 1069–1074. https://doi.org/10.1016/j.ifacol.2019.11.337
dcterms.referencesel Morr, C., & Ali-Hassan, H. (2019). Descriptive, Predictive, and Prescriptive Analytics (pp. 31–55). https://doi.org/10.1007/978-3-030-04506-7_3
dcterms.referencesErickson, B. J., & Kitamura, F. (2021). Magician’s corner: 9. performance metrics for machine learning models. In Radiology: Artificial Intelligence (Vol. 3, Issue 3). Radiological Society of North America Inc. https://doi.org/10.1148/ryai.2021200126
dcterms.referencesErkoyuncu, J. A., Khan, S., Eiroa, A. L., Butler, N., Rushton, K., & Brocklebank, S. (2017). Perspectives on trading cost and availability for corrective maintenance at the equipment type level. Reliability Engineering and System Safety, 168, 53–69. https://doi.org/10.1016/j.ress.2017.05.041
dcterms.referencesFigueroa, R. L., Zeng-Treitler, Q., Kandula, S., & Ngo, L. H. (2012). Predicting sample size required for classification performance. BMC Medical Informatics and Decision Making, 12(1). https://doi.org/10.1186/1472-694712-8
dcterms.referencesFradkov, A. L. (2020). Early history of machine learning. IFAC-PapersOnLine, 53(2), 1385–1390. https://doi.org/10.1016/j.ifacol.2020.12.1888
dcterms.referencesGandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
dcterms.referencesGouveia, B., & Costa, O. (2022). Industry 4.0: Predicting lead conversion opportunities with machine learning in small and medium sized enterprises. Procedia Computer Science, 204, 54–64. https://doi.org/10.1016/j.procs.2022.08.007
dcterms.referencesGupta, A., & Nahar, P. (2022). Classification and yield prediction in smart agriculture system using IoT. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-021-03685-w
dcterms.referencesHe, H., & Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications (1st ed.). Wiley-IEEE Press.
dcterms.referencesIBM. (2020). Machine Learning. https://www.ibm.com/cloud/learn/machinelearning
dcterms.referencesJavaid, M., Abid Haleem, Pratap Singh, R., Rab, S., & Suman, R. (2021). Upgrading the manufacturing sector via applications of Industrial Internet of Things (IIoT). Sensors International, 2, 100129. https://doi.org/10.1016/j.sintl.2021.100129
dcterms.referencesKardex. (2020). Remote Report 2020.
dcterms.referencesKardex. (2021a). Kardex Corporate Profile. Kardex. https://www.kardex.com/en/company/corporate-profile
dcterms.referencesKardex. (2021b). Sistemas automatizados de almacenamiento y recuperación. Kardex. https://www.kardex.com/en/load-unit/small-parts-piece-picking
dcterms.referencesKilleen, P., Ding, B., Kiringa, I., Yeap, T., & Edi, I. (2019). IoT-based predictive predictive maintenance maintenance for fleet management. Procedia Computer Science, 151(2018), 607–613. https://doi.org/10.1016/j.procs.2019.04.184
dcterms.referencesKilleen, P., & Parvizimosaed, A. (2018). An AHP-Based Evaluation of RealTime Stream Processing Technologies in IoT.
dcterms.referencesKotsiantis, S. (2007). Supervised Machine Learning: A Review of Classification Techniques. In Informatica (Vol. 31).
dcterms.referencesLee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP, 38, 3–7. https://doi.org/10.1016/j.procir.2015.08.026
dcterms.referencesLi, L., Lin, J., Ouyang, Y., & Luo, X. (Robert). (2022). Evaluating the impact of big data analytics usage on the decision-making quality of organizations. Technological Forecasting and Social Change, 175. https://doi.org/10.1016/j.techfore.2021.121355
dcterms.referencesLiu, X., Ding, Y., Tang, H., & Xiao, F. (2021). A data mining-based framework for the identification of daily electricity usage patterns and anomaly detection in building electricity consumption data. Energy and Buildings, 231. https://doi.org/10.1016/j.enbuild.2020.110601
dcterms.referencesMemala, W. A., Bhuvaneswari, C., Mana, S. C., Selvan, M. P., Maniraj, M., & Kishore, S. (2021). An approach to remote condition monitoring of electrical machines based on IOT. Journal of Physics: Conference Series, 1770(1). https://doi.org/10.1088/1742-6596/1770/1/012023
dcterms.referencesMena, R., Viveros, P., Zio, E., & Campos, S. (2021). An optimization framework for opportunistic planning of preventive maintenance activities. Reliability Engineering and System Safety, 215. https://doi.org/10.1016/j.ress.2021.107801
dcterms.referencesMohan, R., Roselyn, P., Uthra, A., Devaraj, D., & Umachandran, K. (2021). Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery. Computers and Industrial Engineering, 157(March), 107267. https://doi.org/10.1016/j.cie.2021.107267
dcterms.referencesMohr, F., & Wever, M. (2021). Naive Automated Machine Learning -- A Late Baseline for AutoML. http://arxiv.org/abs/2103.10496
dcterms.referencesNachiappan, R., Javadi, B., Calheiros, R. N., & Matawie, K. M. (2017). Cloud storage reliability for Big Data applications: A state of the art survey. In Journal of Network and Computer Applications (Vol. 97, pp. 35–47). Academic Press. https://doi.org/10.1016/j.jnca.2017.08.011
dcterms.referencesNakajima, S. (1984). Introducción al TPM. Tecnologías de Gerencia y Producción S.A.
dcterms.referencesNguyen, K. T. P., & Medjaher, K. (2019). A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliability Engineering and System Safety, 188(February), 251–262. https://doi.org/10.1016/j.ress.2019.03.018
dcterms.referencesParikh, Y., & Mahamuni, P. (2015). Total Productive Maintenance: Need & Framework. In International Journal of Innovative Research in Advanced Engineering (IJIRAE) (Vol. 2). www.ijirae.com
dcterms.referencesPfeiffer, S. (2017). The Vision of “Industrie 4.0” in the Making—a Case of Future Told, Tamed, and Traded. NanoEthics, 11(1), 107–121. https://doi.org/10.1007/s11569-016-0280-3
dcterms.referencesPrayogo, A. (2020). Analysis of Total Effective Equipment Performance SD5 Machine on Krosok Production Line, Primary Manufacturing Department. (Case Study: PT NT). 1(1), 0–10. http://journal.UMK.ac.id/index.php/jointech
dcterms.referencesRamezan, C. A., Warner, T. A., Maxwell, A. E., & Price, B. S. (2021). Effects of training set size on supervised machine-learning land-cover classification of large-area high-resolution remotely sensed data. Remote Sensing, 13(3), 1–27. https://doi.org/10.3390/rs13030368
dcterms.referencesRani, S., & Sikka, G. (2012). Recent Techniques of Clustering of Time Series Data: A Survey. In International Journal of Computer Applications (Vol. 52, Issue 15).
dcterms.referencesRoda, I., & Macchi, M. (2021). Maintenance concepts evolution: a comparative review towards Advanced Maintenance conceptualization. In Computers in Industry (Vol. 133). Elsevier B.V. https://doi.org/10.1016/j.compind.2021.103531
dcterms.referencesRuiz-sarmiento, J., Monroy, J., Moreno, F., & Galindo, C. (2020). A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87(October 2019), 103289. https://doi.org/10.1016/j.engappai.2019.103289
dcterms.referencesSalah, B., Janeh, O., Bruckmann, T., & Noche, B. (2015). Improving the performance of a new storage and retrieval machine based on a parallel manipulator using FMEA analysis. IFAC-PapersOnLine, 28(3), 1658–1663. https://doi.org/10.1016/j.ifacol.2015.06.324
dcterms.referencesSawalha, S., & Al-Naymat, G. (2021). Towards an efficient big data management schema for IoT. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2021.09.013
dcterms.referencesShankarrao Patange, G., & Bharatkumar Pandya, A. (2022). How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.08.201
dcterms.referencesShet, S. v., & Pereira, V. (2021). Proposed managerial competencies for Industry 4.0 – Implications for social sustainability. Technological Forecasting and Social Change, 173. https://doi.org/10.1016/j.techfore.2021.121080
dcterms.referencesSilvestri, L., Forcina, A., Introna, V., Santolamazza, A., & Cesarotti, V. (2020). Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Computers in Industry, 123. https://doi.org/10.1016/j.compind.2020.103335
dcterms.referencesSivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
dcterms.referencesSmith, R., & Mobley, R. K. (2008a). MTBF User Guide: Measuring Mean Time between Failures. Rules of Thumb for Maintenance and Reliability Engineers, 283–284. https://doi.org/10.1016/B978-075067862-9.50018-6
dcterms.referencesSmith, R., & Mobley, R. K. (2008b). Total Productive Maintenance. Rules of Thumb for Maintenance and Reliability Engineers, 107–120. https://doi.org/10.1016/B978-075067862-9.50008-3
dcterms.referencesTay, S. I., Alipal, J., & Lee, T. C. (2021). Industry 4.0: Current practice and challenges in Malaysian manufacturing firms. Technology in Society, 67. https://doi.org/10.1016/j.techsoc.2021.101749
dcterms.referencesTinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health monitoring to enable predictive maintenance. In Predictive Maintenance in Dynamic Systems: Advanced Methods, Decision Support Tools and Real-World Applications (pp. 313–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-05645-2_11
dcterms.referencesTornede, T., Tornede, A., Wever, M., Mohr, F., & Hüllermeier, E. (2020). AutoML for Predictive Maintenance: One Tool to RUL Them All. Communications in Computer and Information Science, 1325, 106–118. https://doi.org/10.1007/978-3-030-66770-2_8
dcterms.referencesTortorella, G. L., Fogliatto, F. S., Cauchick-Miguel, P. A., Kurnia, S., & Jurburg, D. (2021). Integration of Industry 4.0 technologies into Total Productive Maintenance practices. International Journal of Production Economics, 240. https://doi.org/10.1016/j.ijpe.2021.108224
dcterms.referencesXu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61, 530–535. https://doi.org/10.1016/j.jmsy.2021.10.006
dcterms.referencesYan, H. C., Zhou, J. H., & Pang, C. K. (2016). Machinery degradation inspection and maintenance using a cost-optimal non-fixed periodic strategy. IEEE Transactions on Instrumentation and Measurement, 65(9), 2067–2077. https://doi.org/10.1109/TIM.2016.2563998
dcterms.referencesZaki, M. J., & Meira, W. Jr. (2020). Data Mining and Machine Learning: Fundamental Concepts and Algorithms (Second Edition). Cambridge Univeristy Press.
dcterms.referencesZhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. In Expert Systems with Applications (Vol. 184). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2021.115561
dcterms.referencesZonta, T., André da Costa, C., da Rosa Righi, R., José de Lima, M., Silveira da Trindade, E., & Pyng Li, G. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150(October), 106889. https://doi.org/10.1016/j.cie.2020.106889
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Analítica Aplicadaes_CO
thesis.degree.nameMagíster en Analítica Aplicadaes_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional