Mostrar el registro sencillo del ítem

dc.contributor.advisorEcheverry, Julián Mauricio
dc.contributor.advisorJuha, Mario
dc.contributor.authorLópez Galiano, Iván Camilo
dc.date.accessioned2023-05-02T16:33:06Z
dc.date.available2023-05-02T16:33:06Z
dc.date.issued2023-02-10
dc.identifier.urihttp://hdl.handle.net/10818/55074
dc.description80 páginases_CO
dc.description.abstractThe hip is one of the human anatomical parts that support the weight of the body and performs rotating movements. In addition, the one that presents the most complications. The incidence of cases in the world of failure of this anatomical part is due to the wear of the acetabulum and fractures of the femur produced by osteoarthritis and rheumatoid arthritis, which causes pain, stiffness, swelling and limited movement of the hip. A successful solution to this problem is the hip prosthesis, manufactured over the last century, improving, and even fully alleviating the effects on the patients. In any case, the hip prosthesis is a mechanical element foreign to the body that can fail, caused by aseptic loosening, deep periprosthetic infection, periprosthetic femoral fractures, dislocations, technical errors, and fracture of the implant. One strategy to reduce hip failures is to improve the lifespan of femoral stems for the increasing number of younger patients undergoing total hip arthroplasty due to the increase lifetime expectation of the patient with a more active lifestyle, requiring prostheses with enhanced designs capable of withstanding the mechanical requirements. This research project aims to design a femoral stem for the Colombian young adult population measuring performance by means of non-clinical mechanical testing. Initially, a selection methodology of femoral stems according to the cross section and the maximum stresses was designed to evaluate the maximum stresses in the femoral stem, decreasing the stiffness of the stem, thus reducing the stress shielding effect in the patient bones. A theoretical, computational, and experimental evaluation of the stresses was performed with a maximum average difference of less than 7.5%. Also, the formulation of a new selection methodology, optimizing the area needed for withstand the loads and decreasing the overall stiffness of the stem.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.titleDesign of titanium alloy uncemented femoral stems for hip prosthesis suitable for the young adult populationes_CO
dc.typedoctoral thesises_CO
dc.identifier.local291613
dc.identifier.localTE12238
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcFatiga
dc.subject.decsPrótesis de cadera
dc.subject.decsArtroplastia de reemplazo de cadera
dcterms.referencesAbdelaal, O., Darwish, S., El-Hofy, H., & Saito, Y. (2019). Patient-specific design process and evaluation of a hip prosthesis femoral stem. The International Journal of Artificial Organs, 42(6), 271–290. https://doi.org/10.1177/0391398818815479
dcterms.referencesAltair Engineering. (2021). Practical Aspects of Structural Optimization with Altair OptiStruct TM.
dcterms.referencesArabnejad, S., Johnston, B., Tanzer, M., & Pasini, D. (2017). Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774–1783. https://doi.org/10.1002/jor.23445
dcterms.referencesASTM. (2015). F 2068-15 Standard Specification for Femoral Prostheses — Metallic Implants. ASTM International,West Conshohocken, PA, Www.Astm.Org, 1–6. https://doi.org/10.1520/F2068- 09.Copyright
dcterms.referencesASTM. (2020). F 2996-20 Standard Practice for Finite Element Analysis ( FEA ) of Non-Modular Metallic Orthopaedic Hip Femoral Stems. ASTM International,West Conshohocken, PA, Www.Astm.Org, 1– 11. https://doi.org/10.1520/F2996-20.Development
dcterms.referencesASTM. (2021a). E 8/E 8M-21 standard test methods for tension testing of metallic materials. ASTM International,West Conshohocken, PA, Www.Astm.Org, 03.01(C), 1–30. https://doi.org/10.1520/E0008
dcterms.referencesASTM. (2021b). E 466-21 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. ASTM International,West Conshohocken, PA, Www.Astm.Org, 0301, 1–7. https://doi.org/10.1520/E0466-21
dcterms.referencesBudynas, R., & Nisbett, K. (2011). Shigleys Mechanical Engineering Design. In Mc Graw Hill (Nineth). Mc Graw Hill.
dcterms.referencesHuiskes, R. (1993). Stress shielding and bone resorption in THA: clinical versus computer-simulation studies. Acta Orthopaedica Belgica, 59 Suppl 1, 118–129. http://www.ncbi.nlm.nih.gov/pubmed/8116386
dcterms.referencesISO. (2016). 7206-4:2010 Implants for surgery — Partial and total hip joint prostheses Part 4: Determination of endurance properties and performance of stemmed femoral components. International Organization for Standardization, Geneva, Switzerland, Www.Iso.Org, 1–24.
dcterms.referencesJetté, B., Brailovski, V., Dumas, M., Simoneau, C., & Terriault, P. (2018). Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. Journal of the Mechanical Behavior of Biomedical Materials, 77(August 2017), 58–72. https://doi.org/10.1016/j.jmbbm.2017.08.034
dcterms.referencesJetté, B., Brailovski, V., Simoneau, C., Dumas, M., & Terriault, P. (2018). Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. Journal of the Mechanical Behavior of Biomedical Materials, 77(August 2017), 539–550. https://doi.org/10.1016/j.jmbbm.2017.10.019
dcterms.referencesKladovasilakis, N., Tsongas, K., & Tzetzis, D. (2020). Finite Element Analysis of Orthopedic Hip Implant with Functionally Graded Bioinspired Lattice Structures. Biomimetics, 5(3), 44. https://doi.org/10.3390/biomimetics5030044
dcterms.referencesLópez Galiano, I. C., Juha, M., Ortiz, J. G., & Echeverry-Mejia, J. (2022). Selection Methodology of Femoral Stems According to the Cross Section and the Maximum Stresses. Journal of Biomechanical Engineering, 144(5), 1–7. https://doi.org/10.1115/1.4053006
dcterms.referencesLópez, I., Echeverry-Mejía, J., Ortiz, J. G., & Juha, M. (2022). Selection methodology of femoral stems under fatigue loading conditions. Computer Methods in Biomechanics and Biomedical Engineering, 1–10. https://doi.org/10.1080/10255842.2022.2112186
dcterms.referencesMinisterio de Salud y Protección Social. (n.d.). Registro Individual de Prestaciones de Servicios de Salud, Registro Individual de Prestaciones de Servicios de Salud, Database CUBO, [cited 2022-05-12].
dcterms.referencesNakano, T. (2019). Physical and mechanical properties of metallic biomaterials. In Metals for Biomedical Devices (2nd ed., pp. 97–129). Elsevier. https://doi.org/10.1016/B978-0-08-102666-3.00003-1
dcterms.referencesNiinomi, M. (2007). Recent research and development in metallic materials for biomedical, dental and healthcare products applications. Materials Science Forum, 539–543(PART 1), 193–200. https://doi.org/10.4028/0-87849-428-6.193
dcterms.referencesPruitt, L. A., & Chakravartula, A. M. (2011). Mechanics of Biomaterials Fundamental Principles for Implant Design. In Mechanics of Biomaterials (Issue 2009). Cambridge University Press. https://doi.org/10.1017/CBO9780511977923
dcterms.referencesRidzwan, M. I. Z., Shuib, S., Hassan, A. Y., Shokri, A. A., & Mohammad Ibrahim, M. N. (2007). Problem of stress shielding and improvement to the hip implant designs: A review. In Journal of Medical Sciences (Vol. 7, Issue 3, pp. 460–467). https://doi.org/10.3923/jms.2007.460.467
dcterms.referencesSabatini, A. L., & Goswami, T. (2008). Hip implants VII: Finite element analysis and optimization of cross sections. Materials & Design, 29(7), 1438–1446. https://doi.org/10.1016/j.matdes.2007.09.
dcterms.referencesSimoneau, C., Terriault, P., Jetté, B., Dumas, M., & Brailovski, V. (2017). Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Materials & Design, 114, 546–556. https://doi.org/10.1016/j.matdes.2016.10.064
dcterms.referencesSun, C., Wang, L., Kang, J., Li, D., & Jin, Z. (2018). Biomechanical Optimization of Elastic Modulus Distribution in Porous Femoral Stem for Artificial Hip Joints. Journal of Bionic Engineering, 15(4), 693–702. https://doi.org/10.1007/s42235-018-0057-1
dcterms.referencesWang, Y., Arabnejad, S., Tanzer, M., & Pasini, D. (2018). Hip Implant Design With Three-Dimensional Porous Architecture of Optimized Graded Density. Journal of Mechanical Design, 140(11), 111406. https://doi.org/10.1115/1.4041208
dcterms.referencesWertli, M. M., Schlapbach, J. M., Haynes, A. G., Scheuter, C., Jegerlehner, S. N., Panczak, R., Chiolero, A., Rodondi, N., & Aujesky, D. (2020). Regional variation in hip and knee arthroplasty rates in Switzerland: A population-based small area analysis. PLOS ONE, 15(9), e0238287. https://doi.org/10.1371/journal.pone.0238287
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Ingenieríaes_CO
thesis.degree.nameDoctor en Ingenieríaes_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional