Mostrar el registro sencillo del ítem

dc.contributor.advisorRuiz Pardo, Ruth Yolanda
dc.contributor.advisorMoreno Moreno, Fabián Leonardo
dc.contributor.authorCórdoba Castro, Nancy Marleny
dc.date.accessioned2021-11-25T15:41:56Z
dc.date.available2021-11-25T15:41:56Z
dc.date.issued2021-07-13
dc.identifier.urihttp://hdl.handle.net/10818/49322
dc.description175 páginases_CO
dc.description.abstractEl café se ha convertido en una de las bebidas mas consumidas a nivel mundial. Con un mercado en continuo crecimiento y sofisticación el mercado el café genera un gran impacto a nivel económico, social y cultural.En las últimas décadas, la industria ha sufrido un cambio pasando de considerarseun producto básico “commodity” a ser un producto de especialidad, cada vez más diferenciado y con mayor agregación de valor. En este contexto, los consumidores están buscando diferentes cafés que destaquen su origen, procesamiento post-cosecha, compromiso ético, y sostenibilidad socio-ambiental. La “gourmetización” del café se ha extendido a segmentos antes considerados marginales como las bebidas listas para beber (RTD), queincluyen los cafés preparados por extracción en frio (cold brew), infusiones con nitrógeno. Como resultado, actualmente el mercado de café evidencia una fuerte creciente tendencia hacia productos Premium, personalizados, convenientes, y funcionales.es_CO
dc.description.abstractCoffee has become one of the most consumed beverages worldwide, with a market system showing continuous growth and sophistication and thus having great impacts at the economic, social, and cultural levels. In recent decades, the industry has undergone a change from a basic commodity product to a specialty product that is increasingly differentiated and has greater added value. In this context, a growing share of consumers are looking for different coffees that present specific attributes, such as their origin, postharvest processing, ethical commitment, and socioenvironmental sustainability. The “gourmetization” of coffee has trickled down through supply chains to create market segments previously considered marginal, such as ready-to-drink (RTD) beverages, which include coffees prepared by cold brew, and related infusions with nitrogen. As a result, the coffee market is currently showing a strong growing trend towards premium, personalized, convenient, and functional products. The taste and aroma of coffee cups result from a long and complex chain of transformations. At origin, coffee beans develop a set of chemical compounds influenced by factors associated with genetics, the environment, and management during production and postharvest processes. The quality of green coffee beans then depends on these factors and the presence of chemical compounds that serve as the basis for the formation of the typical flavor and aroma of coffee in the roasting stage. During the preparation of coffee, many of these compounds are extracted, and adjustments to the extraction variables will determine the compounds that reach the final drink, thereby affecting its overall sensory profile. Extraction is also a process that can be used to obtain beverages that are sold packaged, such as coffee by-products or concentrated extracts. Due to the complex transformations that occur in coffee, it is vitally important that the technologies used in the production of these beverages preserve the quality and integrity of the product. Freeze-concentration is one such technology that helps reduce the amount of water in food products, and it has a minimal impact on the functional and flavor characteristics.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.titleEffectsof roasting, extraction and freeze-concentration of specialty coffee from Linares (Nariño, Colombia) on flavor-related compounds and cup qualityen
dc.typedoctoral thesises_CO
dc.identifier.local282690
dc.identifier.localTE11363
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcConsumidores
dc.subject.armarcCafées_CO
dc.subject.armarcBebidases_CO
dc.subject.armarcOloreses_CO
dcterms.referencesBlank I, Pascual E, Devaud S, Fay L, Stadler R, Yeretzian C, et al. Degradation of the Coffee Flavor Compound Furfuryl Mercaptan in Model Fenton-type Reaction Systems. J Agric Food Chem. 2002;50:2356–64
dcterms.referencesRuggiero E, Di Castelnuovo A, Costanzo S, Persichillo M, De Curtis A, Cerletti C, et al. Daily Coffee Drinking Is Associated with Lower Risks of Cardiovascular and Total Mortality in a General Italian Population: Results from the Moli-sani Study. J Nutr. 2020;1–10en
dcterms.referencesCordoba N, Pataquiva L, Osorio C, Moreno F., Ruiz R. Effect of grinding, extraction time and type of coffee on the physicochemical and flavour characteristics of cold brew coffee. Sci Rep. 2019;9(8440):8440.en
dcterms.referencesSittipod S, Schwartz E, Paravisini L, Peterson DG. Identification of flavor modulating compounds that positively impact coffee quality. Food Chem. 2019;301en
dcterms.referencesDonnet ML, Weatherspoon DD, Hoehn JP. What Adds Value in Specialty Coffee? Managerial Implications from Hedonic Price Analysis of Central and South American E-Auctions. Int Food Agribus Manag Rev. 2007;10(3):1–18en
dcterms.referencesSamoggia A, Riedel B, Ruggeri A. Social media exploration for understanding food product attributes perception: the case of coffee and health with Twitter data. Br Food J. 2020;122(12):3815–35.en
dcterms.referencesGrant T. How Cold Brew Captured the Millennial market [Internet]. Perfect daily grind. 2020. Available from: https://perfectdailygrind.com/2020/01/how -cold-brew-captured-the-millennialmarket/en
dcterms.referencesCórdoba N, Moreno FL, Osorio C, Velásquez S, Ruiz Y. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods. Food Res Int. 2021;141:110141en
dcterms.referencesFuller M, Rao NZ. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee. Sci Rep. 2017;7(1):17979en
dcterms.referencesSeninde DR, Chambers E. Coffee Flavor: A Review. Beverages. 2020;6(44):1–25en
dcterms.referencesRao NZ, Fuller M. Acidity and Antioxidant Activity of Cold Brew Coffee. Sci Rep. 2018;8(1):1–9en
dcterms.referencesRao NZ, Fuller M, Grim MD. Physiochemical Characteristics of Hot and Cold Brew Coffee Chemistry : The Effects of Roast Level and Brewing Temperature on Compound Extraction. Foods. 2020;9(902):1–12en
dcterms.referencesRao NZ, Fuller M, Grim MD. Physiochemical Characteristics of Hot and Cold Brew Coffee Chemistry : The Effects of Roast Level and Brewing Temperature on Compound Extraction. Foods. 2020;9(902):1–12en
dcterms.referencesAngeloni G, Guerrini L, Masella P, Innocenti M, Bellumori M, Parenti A. Characterization and comparison of cold brew and cold drip coffee extraction methods. J Sci Food Agric. 2019;99(1):391–9en
dcterms.referencesSeninde DR, Chambers E, Chambers D. Determining the impact of roasting degree , coffee to water ratio and brewing method on the sensory characteristics of cold brew Ugandan coffee. Food Res Int. 2020;137.en
dcterms.referencesKang D eun, Lee HU, Davaatseren M, Chung MS. Comparison of acrylamide and furan concentrations, antioxidant activities, and volatile profiles in cold or hot brew coffees. Food Sci Biotechnol. 2020;29(1):141–8.en
dcterms.referencesMestdagh F, Glabasnia A, Giuliano P. The Brew. Extracting for Excellence. In: Folmer B, editor. The Craft and Science of Coffee. Academic Press; 2017. p. 355–80.en
dcterms.referencesCordoba N, Fernandez-Alduenda M, Moreno FL, Ruiz Y. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci Technol. 2020;96:45–60.en
dcterms.referencesNational coffee Association of USA. Cold Brew Coffee Toolkit for Industry. 2016en
dcterms.referencesSopelana P, Pérez-Martínez M, LópezGalilea I, de Peña MP, Cid C. Effect of ultra high temperature (UHT) treatment on coffee brew stability. Food Res Int. 2013;50(2):682–90en
dcterms.referencesMcCain-Keefer HR, Meals S, Drake MA. The sensory properties and consumer acceptance of cold brew coffee. J Sens Stud. 2020;(Juneen
dcterms.referencesCasas-Forero N, Orellana-Palma P, Petzold G. Influence of block freeze concentration and evaporation on physicochemical properties, bioactive compounds and antioxidant activity in blueberry juice. Food Sci Technol. 2020;40(December):387–94.en
dcterms.referencesSanchez J, Ruiz Y, Auleda JMM, Hernandez E, Raventos M. Review. Freeze Concentration in the Fruit Juices Industry. Food Sci Technol Int. 2009;15(4):303–15en
dcterms.referencesRamos FA, Delgado JL, Bautista E, Morales AL, Duque C. Changes in volatiles with the application of progressive freezeconcentration to Andes berry (Rubus glaucus Benth). J Food Eng. 2005;69(3):291–7.en
dcterms.referencesMoreno FL, Raventós M, Hernández E, Ruiz Y. Behaviour of falling-film freeze concentration of coffee extract. J Food Eng. 2014;141:20–6.en
dcterms.referencesMoreno FL, Quintanilla-Carvajal MX, Sotelo LI, Osorio C, Raventos M, Hernández E, et al. Volatile compounds, sensory quality and ice morphology in falling-film and block freeze concentration of coffee extract. J Food Eng. 2015;166:64–71en
dcterms.referencesCorrea LJ, Ruiz RY, Moreno FL. Effect of falling-film freeze concentration on bioactive compounds in aqueous coffee extract. J Food Process Eng. 2017;(April):1–8en
dcterms.referencesMoreno FL, Raventós M, Hernández E, Ruiz Y. Block freeze-concentration of coffee extract: Effect of freezing and thawing stages on solute recovery and bioactive compounds. J Food Eng. 2014;120(1):158–66en
dcterms.referencesICONTEC. NTC 2441. Roast and milled coffee. Method for determination of average particle size by granulometric distribution. Colombia; 2011en
dcterms.referencesMoreno FL, Raventós M, Hernández E, Santamaría N, Acosta J, Pirachican O, et al. Rheological behaviour, freezing curve, and density of coffee solutions at temperatures close to freezing. Int J Food Prop. 2015 Feb;18(2):426–38en
dcterms.referencesOsorio M, Moreno FL, Raventós M, Hernández E, Ruiz Y. Progressive stirred freeze-concentration of ethanol-water solutions. J Food Eng. 2018;224:71–9.en
dcterms.referencesMoreno FL, Raventós M, Hernández E, Ruiz Y. Behaviour of falling-film freeze concentration of coffee extract. J Food Eng. 2014;141:20–6.en
dcterms.referencesMoreno FL, Hernández E, Raventós M, Robles C, Ruiz Y. A process to concentrate coffee extract by the integration of falling film and block freezeconcentration. J Food Eng. 2014;128:88– 95en
dcterms.referencesLudwig IA, Clifford MN, Lean MEJ, Ashihara H, Crozier A. Coffee: Biochemistry and potential impact on health. Food Funct. 2014;5(8):1695–717en
dcterms.referencesICONTEC. NTC 3932. Sensory analysis. Identification and selection of descriptors for establishing a sensory profile by a multidimensional approach. 1996en
dcterms.referencesInternational Organization for Standardization (ISO). Sensory analysis. Identification and selection of descriptors for establishing a sensory profile by a multidimensional approach (ISO 11035). 1994en
dcterms.referencesChambers E, Sanchez K, Phan UXTT, Miller R, Civille G V., Di Donfrancesco B. Development of a “living” lexicon for descriptive sensory analysis of brewed coffee. J Sens Stud. 2016;31(6):465–80.en
dcterms.referencesWorld Coffee Research. Sensory Lexicon: Unabridged Definition and References. College Station,TX: World Coffee Research; 2017.en
dcterms.referencesSCA. Protocol Cupping Specialty Coffee. SCAA Protocols. Santa Ana, California; 2015en
dcterms.referencesPetzold G, Aguilera JM. Ice morphology: Fundamentals and technological applications in foods. Food Biophys. 2009;4(4):378–96.en
dcterms.referencesRaventós M, Hernández E, Auleda J, Ibarz A. Concentration of aqueous sugar solutions in a multi-plate cryoconcentrator. J Food Eng. 2007;79(2):577–85en
dcterms.referencesVuist JE, Boom RM, Schutyser MAI. Solute inclusion and freezing rate during progressive freeze concentration of sucrose and maltodextrin solutions. Dry Technol. 2020;0(0):1–9en
dcterms.referencesRaventós M, Hernández E, Auleda J, Ibarz A. Concentration of aqueous sugar solutions in a multi-plate cryoconcentrator. J Food Eng. 2007;79(2):577–85.en
dcterms.referencesNunes F., Coimbra M. Chemical Characterization of Galactomannans ans Arabinoglalctans from Two Arabica Coffee Infusions As Affectes by the Degree of Roast. J Agric Food Chem. 2002;50:1429– 34.en
dcterms.referencesJeszka-Skowron M, Zgoła-Grześkowiak A, Grześkowiak T. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur Food Res Technol. 2014;240(1):19–31.en
dcterms.referencesAider M, de Halleux D. Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT - Food Sci Technol. 2008;41(10):1768–75.en
dcterms.referencesda Silva Portela C, de Almeida I, Buzzo AL, Yamashita F, de Toledo M. Brewing conditions impact on the composition and characteristics of cold brew Arabica and Robusta coffee beverages. LWT - Food Sci Technol. 2021;(143):111090en
dcterms.referencesChen P, Chen XD. A generalized correlation of solute inclusion in ice formed from aqueous solutions and food liquids on sub-cooled surface. Can J Chem Eng. 2000;78(2):312–9.en
dcterms.referencesSequera S., Ruiz Y, Moreno F., Quintanilla-Carvajal M., Salcedo F. Rheological evaluation of gelation during thermal treatments in block freeze concentration of coffee extract. J Food Eng. 2018en
dcterms.referencesToci AT, Boldrin MVZ. Coffee Beverages and Their Aroma Compounds. In: Grumezescu A., Holbal A., editors. Handbook of food bioengineering: Natural and Artificial Flavoring Agents and Food Dyes. Academic Press; 2018. p. 397–425en
dcterms.referencesYeretzian C, Opitz SEW, Smrke S, Wellinger M. Coffee Volatile and Aroma Compounds – From the Green Bean to the Cup. In: Farah A, editor. Coffee: Production, Quality and Chemistry. Cambridge, United Kingdom: Royal Society of Chemistry; 2019. p. 726–70en
dcterms.referencesCaporaso N, Whitworth MB, Cui C, Fisk ID. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GCMS. Food Res Int. 2018;108(April):628– 40en
dcterms.referencesToci AT, Farah A. Volatile fingerprint of Brazilian defective coffee seeds: Corroboration of potential marker compounds and identification of new low quality indicators. Food Chem. 2014;153:298–314.en
dcterms.referencesCaporaso N, Genovese A, Canela MD, Civitella A, Sacchi R. Neapolitan coffee brew chemical analysis in comparison to espresso, moka and American brews. Food Res Int. 2014 Jul;61:152–60.en
dcterms.referencesSanz C, Czerny M, Cid C, Schieberle P. Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur Food Res Technol. 2002;214(4):299–302.en
dcterms.referencesMüller R, Rappert S. Pyrazines: Occurrence, formation and biodegradation. Appl Microbiol Biotechnol. 2010;85(5):1315–20.en
dcterms.referencesDulsat-Serra N, Quintanilla-Casas B, Vichi S. Volatile thiols in coffee: A review on their formation, degradation, assessment and influence on coffee sensory quality. Food Res Int. 2016en
dcterms.referencesKumazawa K, Masuda H. Investigation of the change in the flavor of a coffee drink during heat processing. J Agric Food Chem. 2003;51(9):2674–8.en
dcterms.referencesPérez-Martínez M, Sopelana P, De Peña MP, Cid C. Effects of refrigeration and oxygen on the coffee brew composition. Eur Food Res Technol. 2008;227(6):1633–40.en
dcterms.referencesWeerawatanakorn M, Wu JC, Pan MH, Ho CT. Reactivity and stability of selected flavor compounds. J Food Drug Anal. 2015;23(2):176–90.en
dcterms.referencesGunathilake M, Shimmura K, Dozen M, Miyawaki O. Flavor retention in progressive freeze-concentration of coffee extract and pear (La France) juice flavor condensate. Food Sci Technol Res.en
dcterms.referencesBatali M, Ristenpart WD, Guinard JX. Brew temperature, at fixed brew strength and extraction, has little impact on the sensory profile of drip brew coffee. Sci Rep. 2020;10(16450).en
dcterms.referencesFrost SC, Ristenpart WD, Guinard JX. Effects of brew strength, brew yield, and roast on the sensory quality of drip brewed coffee. J Food Sci. 2020;85(8):2530–43.en
dcterms.referencesGloess AN, Schönbächler B, Klopprogge B, D’Ambrosio L, Chatelain K, Bongartz A, et al. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur Food Res Technol. 2013;236(4):607–27.en
dcterms.referencesBatali ME, Frost SC, Lebrilla CB, Ristenpart WD, Guinard JX. Sensory and monosaccharide analysis of drip brew coffee fractions versus brewing time. J Sci Food Agric. 2020;en
dcterms.referencesLudwig IA, Sanchez L, Caemmerer B, Kroh LW, De Peña MP, Cid C. Extraction of coffee antioxidants: Impact of brewing time and method. Food Res Int. 2012;48(1):57–64.en
dcterms.referencesBlumberg S, Frank O, Hofmann T. Quantitative studies on the influence of the bean roasting parameters and hot water percolation on the concentrations of bitter compounds in coffee brew. J Agric Food Chem. 2010;58(6):3720–8en
dcterms.referencesSpence C. Multisensory Flavor Perception. Cell. 2015;161(1):24–35en
dcterms.referencesLaing D. Percentual Odour Interactions and Objective Mixture Analysis. Food Qual Prefer. 1994;5:75–80.en
dcterms.referencesGrosch W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses. 2001;26(5):533–45.en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional