dc.contributor.advisor | Moreno Moreno, Fabián Leonardo | |
dc.contributor.advisor | Filomena Ambrosio, Annamaría | |
dc.contributor.advisor | Sotelo Diaz, Luz Indira | |
dc.contributor.author | Ángel Rendón, Sara Victoria | |
dc.date.accessioned | 2021-06-03T21:17:10Z | |
dc.date.available | 2021-06-03T21:17:10Z | |
dc.date.issued | 2020-03-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/47669 | |
dc.description | 111 páginas | es_CO |
dc.description.abstract | In Colombia, pork meat is the third most consumed meat source, and while it is of relatively low consumption compared to other countries in Latin America, it is present in a wide variety of preparations in the country, and it is part of the Colombian diet. One of the most important characteristics of foods is heterogeneity, and in meat cooking, it is evidenced by the different cuts found in markets, as they are not a single isolated muscle, but a compendium of different muscles, connective tissue, fat tissue and, at times, bone. Ohmic cooking is a novel technique that, until the past two decades, has been studied for the application on meat cooking, but without widespread commercial application. Characterized by volumetric heating that is dependent on electrical conductivity instead of thermal conductivity, it is an innovative application in the gastronomic sector for the homogenous heating of foods. On the other hand, vacuum cooking consists on cooking under continuous vacuum conditions where sub-atmospheric pressures are achieved, thus resulting in the boiling of water at temperatures below 100°C, and can contribute to the preservation of nutritional and sensorial characteristics of the food matrixes. For meat, sensorial characteristics like colour, flavour, juiciness and softness are some of the “drivers of liking”, or the most important parameters that dictate the preference of consumers at the point of purchase for meat products. Hence, this research proposed to establish the effects of cooking technologies like ohmic and vacuum cooking, on physicochemical and sensorial characteristics of pork meat, specifically short shank. For this, the cooking loss, water holding capacity, colour and sensorial profile of ohmic cooking (21 ± 1 V/cm for 2, 2.5 and 3 minutes) and vacuum cooking (70°C for 25, 30 and 35 minutes) were studied and compared with pan cooking (13 minutes) and sous vide cooking (70°C for 45 minutes) respectively. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Ohmic cooking | en |
dc.subject | Vacuum cooking | en |
dc.subject | Sous vide cooking | en |
dc.subject | Carne de cerdo | spa |
dc.title | Evaluation of the effects of ohmic and vacuum cooking on the sensorial and physicochemical properties of pork meat (short shank) | es_CO |
dc.type | masterThesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dcterms.references | Andrés-Bello, A., García-Segovia, P., Martínez-Monzó, J., 2009. Effects of vacuum cooking (cookvide) on the physical-chemical properties of sea bream fillets (Sparus aurata). J. Aquat. Food
Prod. Technol. 18, 79–89. https://doi.org/10.1080/10498850802581773 | en |
dcterms.references | Ángel-Rendón, S.V., Filomena-Ambrosio, A., Cordon-Díaz, S., Benítez-Sastoque, E.R., Sotelo-Díaz,
L.I., 2019. Ohmic cooking: Application of a novel technology in pork and influences on water
holding capacity, cooking loss and colour. Int. J. Gastron. Food Sci. 17, 100164.
https://doi.org/10.1016/j.ijgfs.2019.100164 | en |
dcterms.references | Aykın, E., Erbaş, M., 2016. Quality properties and adsorption behavior of freeze-dried beef meat from
the Biceps femoris and Semimembranosus muscles. Meat Sci. 121, 272–277.
https://doi.org/10.1016/j.meatsci.2016.06.030 | en |
dcterms.references | Babić, J., Cantalejo, M.J., Arroqui, C., Babic, J.B., Cantalejo, M.J., Arroqui, C., 2009. The effects of
freeze-drying process parameters on Broiler chicken breast meat. LWT - Food Sci. Technol. 42,
1325–1334. https://doi.org/10.1016/j.lwt.2009.03.020 | en |
dcterms.references | Bozkurt, H., Icier, F., 2010. Ohmic cooking of ground beef: Effects on quality. J. Food Eng. 96, 481–
490. https://doi.org/10.1016/j.jfoodeng.2009.08.030 | en |
dcterms.references | Buckley, D.J., Morrissey, P.A., Gray, J.I., 1995. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 73, 3122. https://doi.org/10.2527/1995.73103122x | en |
dcterms.references | Chen, X.D., Mujumdar, A.S., 2008. Drying technologies in food processing. Blackwell Pub. | en |
dcterms.references | Cheng, H., Erichsen, H., Soerensen, J., Petersen, M.A., Skibsted, L.H., 2019. Optimising water
activity for storage of high lipid and high protein infant formula milk powder using multivariate
analysis. Int. Dairy J. 93, 92–98. https://doi.org/10.1016/j.idairyj.2019.02.008 | en |
dcterms.references | Cheng, H., Zhu, R.G., Erichsen, H., Soerensen, J., Petersen, M.A., Skibsted, L.H., 2017. High
temperature storage of infant formula milk powder for prediction of storage stability at ambient
conditions. Int. Dairy J. 73, 166–174. https://doi.org/10.1016/j.idairyj.2017.05.007 | en |
dcterms.references | Clemente, G., Bon, J., Benedito, J., Mulet, A., 2009. Desorption isotherms and isosteric heat of desorption of previously frozen raw pork meat. Meat Sci. 82, 413–418.
https://doi.org/10.1016/j.meatsci.2009.02.020 | en |
dcterms.references | Costa, N.R., Cappato, L.P., Pereira, M.V.S., Pires, R.P.S., Moraes, J., Esmerino, E.A., Silva, R.,
Neto, R.P.C., Tavares, M.I.B., Freitas, M.Q., Silveira Júnior, R.N., Rodrigues, F.N., Bisaggio,
R.C., Cavalcanti, R.N., Raices, R.S.L., Silva, M.C., Cruz, A.G., 2018. Ohmic Heating: A potential
technology for sweet whey processing. Food Res. Int. 106, 771–779.
https://doi.org/10.1016/j.foodres.2018.01.046 | en |
dcterms.references | Dai, Y., Lu, Y., Wu, W., Lu, X.M., Han, Z.P., Liu, Y., Li, X.M., Dai, R.T., 2014. Changes in oxidation,
104
color and texture deteriorations during refrigerated storage of ohmically and water bath-cooked
pork meat. Innov. Food Sci. Emerg. Technol. 26, 341–346.
https://doi.org/10.1016/j.ifset.2014.06.009 | en |
dcterms.references | Fadavi, A., Yousefi, S., Darvishi, H., Mirsaeedghazi, H., 2018. Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate. Innov. Food Sci. Emerg. Technol. 47, 225–230. https://doi.org/10.1016/j.ifset.2018.03.004 | en |
dcterms.references | Fuentes, V., Ventanas, J., Morcuende, D., Estévez, M., Ventanas, S., 2010. Lipid and protein
oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high
hydrostatic pressure. Meat Sci. 85, 506–514. https://doi.org/10.1016/j.meatsci.2010.02.024 | en |
dcterms.references | García-Segovia, P., Andrés-Bello, A., Martínez-Monzó, J., 2007. Effect of cooking method on
mechanical properties, color and structure of beef muscle (M. pectoralis). J. Food Eng. 80, 813–
821. https://doi.org/10.1016/j.jfoodeng.2006.07.010 | en |
dcterms.references | Hunt, M.C., King, A., Barbut, S., Clause, J., Cornforth, D., Hanson, D., Lindahl, G., Mancini, R.,
Milkowski, A., Mohan, A., 2012. AMSA meat color measurement guidelines, American Meat
Science Association, Champaign, Illinois USA. | en |
dcterms.references | Jay, James M., Loessner, Martin J., and Golden, D.A., 2005. Modern Food Microbiology. Mod. Food
Microbiol. SE - 18. https://doi.org/10.1007/0-387-23413-6_18 | en |
dcterms.references | Kanner, J., 1994. Oxidative processes in meat and meat products: Quality implications. Meat Sci. 36,
169–189. https://doi.org/10.1016/0309-1740(94)90040-X | en |
dcterms.references | Kim, Y.H., Huff-Lonergan, E., Sebranek, J.G., Lonergan, S.M., 2010. High-oxygen modified
atmosphere packaging system induces lipid and myoglobin oxidation and protein
polymerization. Meat Sci. 85, 759–767. https://doi.org/10.1016/j.meatsci.2010.04.001 | en |
dcterms.references | Kondjoyan, A., Chevolleau, S., Grève, E., Gatellier, P., Santé-Lhoutellier, V., Bruel, S., Touzet, C.,
Portanguen, S., Debrauwer, L., 2010. Modelling the formation of heterocyclic amines in slices
of longissimus thoracis and semimembranosus beef muscles subjected to jets of hot air. Food
Chem. 123, 659–668. https://doi.org/10.1016/j.foodchem.2010.05.02 | en |
dcterms.references | Labuza, T.P., Dugan, L.R., 1971. Kinetics of lipid oxidation in foods. C R C Crit. Rev. Food Technol.
2, 355–405. https://doi.org/10.1080/10408397109527127 | en |
dcterms.references | Laopoolkit, P., Suwannaporn, P., 2011. Effect of pretreatments and vacuum drying on instant dried
pork process optimization. Meat Sci. 88, 553–558.
https://doi.org/10.1016/j.meatsci.2011.02.011 | en |
dcterms.references | Lopez-Quiroga, E., Antelo, L.T., Alonso, A.A., 2012. Time-scale modeling and optimal control of
freeze-drying. J. Food Eng. 111, 655–666. https://doi.org/10.1016/j.jfoodeng.2012.03.001 | en |
dcterms.references | Luber, P., 2011. The Codex Alimentarius guidelines on the application of general principles of food
hygiene to the control of Listeria monocytogenes in ready-to-eat foods. Food Control 22, 1482–
1483. https://doi.org/10.1016/j.foodcont.2010.07.013 | en |
dcterms.references | Ma, Y., Wu, X., Zhang, Q., Giovanni, V., Meng, X., 2018. Key composition optimization of meat
processed protein source by vacuum freeze-drying technology. Saudi J. Biol. Sci. 25, 724–732.
https://doi.org/10.1016/j.sjbs.2017.09.013 | en |
dcterms.references | Mcdonnell, C.K., Allen, P., Chardonnereau, F.S., Arimi, J.M., Lyng, J.G., 2014. The use of pulsed
105
electric fields for accelerating the salting of pork. https://doi.org/10.1016/j.lwt.2014.05.053 | en |
dcterms.references | Mordor Intelligence, 2018. Freeze Dried Food Market: Growth, Trends, Forecasts (2019-2024) | en |
dcterms.references | OFR, O. of the F.R., 2019. Electronic Code of Federal Reculations. Title 21 — Food and Drugs. Code
Fed. Regul. United States Am | en |
dcterms.references | Pedersen, S.J., Feyissa, A.H., Brøkner Kavli, S.T., Frosch, S., 2016. An investigation on the
application of ohmic heating of cold water shrimp and brine mixtures. J. Food Eng. 179, 28–35.
https://doi.org/10.1016/j.jfoodeng.2016.01.022 | en |
dcterms.references | Ruan, R., Ye, X., Chen, P., Doona, C., Yang, T., 2004. Developments in ohmic heating, in: Improving
the Thermal Processing of Foods. Elsevier Ltd, pp. 224–252. https://doi.org/10.1016/B978-1-
85573-730-3.50016-4 | en |
dcterms.references | Skovgaard, N., 2009. Drying technologies in food processing. Int. J. Food Microbiol. 129, 209.
https://doi.org/10.1016/j.ijfoodmicro.2008.12.004 | en |
dcterms.references | Stapelfeldt, H., Meisen, B.R., Skibsted, L.H., 1997. Effect of heat treatment, water activity and storage
temperature on the oxidative stability of whole milk powder. Int. Dairy J. 7, 331–339.
https://doi.org/10.1016/S0958-6946(97)00016-2 | en |
dcterms.references | Wan, J., Cao, A., Cai, L., 2019. Effects of vacuum or sous-vide cooking methods on the quality of
largemouth bass (Micropterus salmoides). Int. J. Gastron. Food Sci. 18.
https://doi.org/10.1016/j.ijgfs.2019.100181 | en |
dcterms.references | Yalçin, M.Y., Şeker, M., 2016. Effect of salt and moisture content reduction on physical and
microbiological properties of salted, pressed and freeze dried turkey meat. LWT - Food Sci.
Technol. 68, 153–159. https://doi.org/10.1016/j.lwt.2015.12.032 | en |
dcterms.references | Zell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J., 2010. Ohmic cooking of whole turkey meat - Effect
of rapid ohmic heating on selected product parameters. Food Chem. 120, 724–729.
https://doi.org/10.1016/j.foodchem.2009.10.069 | en |
dcterms.references | Zeng, X. an, Han, Z., Zi, Z. hong, 2010. Effects of pulsed electric field treatments on quality of peanut
oil. Food Control 21, 611–614. https://doi.org/10.1016/j.foodcont.2009.09.004 | en |
dc.agrosavia | | |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Maestría en Diseño y Gestión de Procesos2020 | es_CO |
thesis.degree.name | Magíster en Diseño y Gestión de Procesos | es_CO |