Mostrar el registro sencillo del ítem

dc.contributor.advisorRabelo Mendizábal, Luis Carlos
dc.contributor.authorBallestas Vivas, Andrés Manuel
dc.date.accessioned2021-03-19T01:01:54Z
dc.date.available2021-03-19T01:01:54Z
dc.date.issued2021-02-17
dc.identifier.urihttp://hdl.handle.net/10818/47160
dc.description155 páginases_CO
dc.description.abstractLas revoluciones se han generado a lo largo de nuestra historia cuando tanto la tecnología como las nuevas formas en que las personas percibimos el mundo desencadenan cambios significativos no solo en los sistemas económicos sino también en las estructuras sociales. De los principales retos a los cuales nos enfrentamos hoy en día, uno de los más importantes es cómo entender y darle paso a las diferentes revoluciones que surgen y que significan una transformación de la humanidad. En la actualidad, estamos entrando en la cuarta revolución industrial, una revolución que cambiará esencialmente la forma en la que vivimos, trabajamos y nos conectamos o relacionamos los unos con los otros. El proceso de los seres humanos para transformar su sociedad se debe en gran medida a su curiosidad por la evolución tecnológica. La cual, durante las últimas décadas, ha permitido a la humanidad cruzar nuevas fronteras en todos los sectores económicos permitiendo realizar trabajos en periodos más cortos y con mayor precisión (Sharma et al., 2019).es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherMétodo Delphispa
dc.subject.otherAnálisis de datosspa
dc.titleElaboración de un plan de mitigación de riesgos de malware en IoT aplicado a un caso de estudio de una solución de gestión de salas de cirugía utilizando delphi y simulaciónes_CO
dc.typemasterThesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.subject.armarcQuirófanosspa
dc.subject.armarcInnovaciones tecnológicasspa
dc.subject.armarcToma de decisionesspa
dcterms.referencesInternet of Things units installed base by category 2014-2020 | Statista. (n.d.). Retrieved August 4, 2020, from https://www.statista.com/statistics/370350/internet-of-things-installed-base-bycategory/es_CO
dcterms.referencesAcarali, D., Rajarajan, M., Komninos, N., & Zarpelão, B. B. (2019). Modelling the Spread of Botnet Malware in IoT-Based Wireless Sensor Networks. Security and Communication Networks, 2019. https://doi.org/10.1155/2019/3745619en
dcterms.referencesAkamai. (2020). Use routed map. https://learn.akamai.com/en-us/webhelp/securitycenter/kona-security-solutions-security-center-user-guide/GUID-066058C0- 5D3F-417A-98D1-04AA6472BA45.htmlen
dcterms.referencesAlenezi, A., Atlam, H. F., Alsagri, R., Alassafi, M. O., & Wills, G. B. (2019). IoT forensics: A state-of-the-art review, challenges and future directions. COMPLEXIS 2019 - Proceedings of the 4th International Conference on Complexity, Future Information Systems and Risk, 106–115. https://doi.org/10.5220/0007905401060115en
dcterms.referencesAngrishi, K. (2017). Turning Internet of Things(IoT) into Internet of Vulnerabilities (IoV) : IoT Botnets. http://arxiv.org/abs/1702.03681en
dcterms.referencesArmiñana Gorriz, J. (2018). Seguridad en Internet de las Cosas Honeypot to capture IoT-attack methods. http://openaccess.uoc.edu/webapps/o2/bitstream/10609/82136/6/parriagaTFM06 18memoria.pdfen
dcterms.referencesAtlam, H. F., Walters, R. J., & Wills, G. B. (2018). Internet of Things: State-of-the-art, Challenges, Applications, and Open Issues. International Journal of Intelligent Computing Research, 9(3), 928–938. https://doi.org/10.20533/ijicr.2042.4655.2018.0112en
dcterms.referencesBauer, H., Burkacky, O., & Knochenhauer, C. (2017). Security in the Internet of Things.en
dcterms.referencesBechtsoudis, A., & Sklavos, N. (2010). Side channel attacks cryptanalysis against block ciphers based on FPGA devices. Proceedings - IEEE Annual Symposium on VLSI, ISVLSI 2010, 460–461. https://doi.org/10.1109/ISVLSI.2010.104en
dcterms.referencesBerggren, R. (2020). Benchmarking and comparison of a relational and a graph database in a CMDB contexen
dcterms.referencesBrian Krebs. (2016). Who makes the IoT things under attack? In Krebs on Security. https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-attack/en
dcterms.referencesCha, S., Ruiz, M. P., Wachowicz, M., Tran, L. H., Cao, H., & Maduako, I. (2017). The role of an IoT platform in the design of real-time recommender systems. 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT 2016, 448–453. https://doi.org/10.1109/WF-IoT.2016.7845469en
dcterms.referencesChang, Z. (2019). Inside the Smart Home: IoT Device Threats and Attack Scenarios - Security News - Trend Micro USA. https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/insidethe-smart-home-iot-device-threats-and-attack-scenariosen
dcterms.referencesChen, T. M., & Abu-Nimeh, S. (2011). Lessons from Stuxnet. Computer, 44(4), 91– 93. https://doi.org/10.1109/MC.2011.115en
dcterms.referencesChib, S., & Greenberg, E. (1996). Markov Chain Monte Carlo Simulation Methods in Econometrics. Econometric Theory, 12(3), 409–431. https://doi.org/10.1017/s0266466600006794en
dcterms.referencesCloudflare. (2019). What is the Mirai Botnet? Cloudflare, 1–4. https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/en
dcterms.referencesCoss, R. (2005). Simulacion un enfoque practico. 158.es_CO
dcterms.referencesCosta, L., Barros, J. P., & Tavares, M. (2019). Vulnerabilities in IoT devices for smart home environment. ICISSP 2019 - Proceedings of the 5th International Conference on Information Systems Security and Privacy, 615–622. https://doi.org/10.5220/0007583306150622en
dcterms.referencesDe Donno, M., Dragoni, N., Giaretta, A., & Spognardi, A. (2018). DDoS-Capable IoT Malwares: Comparative Analysis and Mirai Investigation. Security and Communication Networks, 2018. https://doi.org/10.1155/2018/7178164en
dcterms.referencesDeogirikar, J., & Vidhate, A. (2017). Security attacks in IoT: A survey. Proceedings of 147 the International Conference on IoT in Social, Mobile, Analytics and Cloud, ISMAC 2017, 32–37. https://doi.org/10.1109/I-SMAC.2017.8058363en
dcterms.referencesENISA. (2017). Baseline Security Recommendations for IoT. November, 1–103. https://doi.org/10.2824/03228en
dcterms.referencesEstrada, D., Tawalbeh, L., & Vinaja, R. (2020). How Secure Having IoT Devices in Our Homes? Journal of Information Security, 11(02), 81–91. https://doi.org/10.4236/jis.2020.112005en
dcterms.referencesEustis, A. G. (2019). The Mirai Botnet and the Importance of IoT Device Security. 85– 89. https://doi.org/10.1007/978-3-030-14070-0_13en
dcterms.referencesFagade, T., Spyridopoulos, T., Albishry, N., & Tryfonas, T. (2017). System dynamics approach to malicious insider cyber-threat modelling and analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10292 LNCS, 309–321. https://doi.org/10.1007/978-3-319-58460-7_21en
dcterms.referencesFalliere, N., Murchu, L. O., & Chien, E. (2011). W32.Stuxnet Dossier. SymantecSecurity Response, Version 1.(February 2011), 1–69. https://doi.org/20 September 2015en
dcterms.referencesFeily, M., Shahrestani, A., & Ramadass, S. (2009). A survey of botnet and botnet detection. Proceedings - 2009 3rd International Conference on Emerging Security Information, Systems and Technologies, SECURWARE 2009, 268–273. https://doi.org/10.1109/SECURWARE.2009.48en
dcterms.referencesFicco, M. (2019). Detecting IoT malware by markov chain behavioral models. Proceedings - 2019 IEEE International Conference on Cloud Engineering, IC2E 2019, 229–234. https://doi.org/10.1109/IC2E.2019.00037en
dcterms.referencesFortiGuard SE Team. (2017). Reaper: The Next Evolution of IoT Botnets. Fortinet. https://www.fortinet.com/blog/threat-research/reaper-the-next-evolution-of-iotbotnets.htmlen
dcterms.referencesFrank, C., Nance, C., Jarocki, S., Pauli, W. E., & Madison, S. D. (2017). Protecting IoT from Mirai botnets; IoT device hardening. Proceedings of the Conference on Information Systems Applied Research ISSN, 2167, 1508. http://iscap.infoen
dcterms.referencesFuster, A., del Rey, M., & Rodriguez, G. (2014). Simulación de la propagación del 148 malware : Modelos continuos vs . modelos discretos. Resci 2014, 2–5.es_CO
dcterms.referencesGardner, M. T., Beard, C., & Medhi, D. (2017). Using SEIRS epidemic models for IoT botnets attacks. DRCN 2017 - 13th International Conference on Design of Reliable Communication Networksen
dcterms.referencesGemalto. (2019). Gemalto: State of IoT Security. Network Security, 2019(2), 4. https://doi.org/10.1016/s1353-4858(19)30018-2en
dcterms.referencesGenge, B., Kiss, I., & Haller, P. (2015). A system dynamics approach for assessing the impact of cyber attacks on critical infrastructures. International Journal of Critical Infrastructure Protection, 10, 3–17. https://doi.org/10.1016/j.ijcip.2015.04.001en
dcterms.referencesHealthcare Modeling and Decision Making During Pandemics: A Case Study. (n.d.). Retrieved October 12, 2020, from https://www.simio.com/blog/2020/04/10/healthcare-modeling-and-decisionmaking-during-pandemics-a-case-studyen
dcterms.referencesHomeland Security. (2003). Homeland Security Presidential Directive 7: Critical Infrastructure Identification, Prioritization, and Protection. National Security Presidential Directives, 104(1), 1822–1826. https://www.dhs.gov/sites/default/files/publications/Homelanden
dcterms.referencesHosseini, S., Abdollahi Azgomi, M., & Rahmani Torkaman, A. (2016). Agent-based simulation of the dynamics of malware propagation in scale-free networks. Simulation, 92(7), 709–722. https://doi.org/10.1177/0037549716656060en
dcterms.referencesHsu, A. P. T., Lee, W. T., Trappey, A. J. C., Trappey, C. V, & Chang, A. C. (2016). Using System Dynamics Analysis for Performance Evaluation of IoT Enabled One-Stop Logistic Services. Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, 1291–1296. https://doi.org/10.1109/SMC.2015.230en
dcterms.referencesHu, S., Hu, B., & Cao, Y. (2018). The wider, the better? The interaction between the IoT diffusion and online retailers’ decisions. Physica A: Statistical Mechanics and Its Applications, 509, 196–209. https://doi.org/10.1016/j.physa.2018.06.008en
dcterms.referencesHuang, C. Y., & Chen, H. N. (2010). Global digital divide: A dynamic analysis based on the Bass model. Journal of Public Policy and Marketing, 29(2), 248–264. https://doi.org/10.1509/jppm.29.2.248en
dcterms.referencesHughes, D. (2016). Silent risk: new incarnations of longstanding threats. Network Security, 2016(8), 17–20. https://doi.org/10.1016/S1353-4858(16)30079-4en
dcterms.referencesHugo Hernando, A. S., Emiliano de Jesús, L. M., Hernandez Cuadrado, A. E., & Monsalve Quintero, A. J. (2010). Evolución: Herramienta software para modelado y simulación con Dinámica de Sistemas. Dinámica de Sistemas, 5(1), 1–27es_CO
dcterms.referencesHumphrey, D. (2018). HARTING Deploys Edge Computing in Its Own Production.en
dcterms.referencesHung, M. (2017). Leading the IoT. In Journal of Telecommunication, Electronic and Computer Engineering (Vol. 7, Issue 1). https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdfen
dcterms.referencesIBM. (2019). Cost of a Data Breach Report. IBM Security. https://www.ibm.com/security/data-breachen
dcterms.referencesIdika, N., & A.P.Mathur. (2007). A survey of {M}alware {D}etection {T}echniques, Purdue University. Profsandhu.Com. http://profsandhu.com/cs5323_s17/im_2007.pdfen
dcterms.referencesIEEE. (2013). IEEE Spectrum - March 2013. IEEE Spectrum, 43(3), 1. https://doi.org/10.1109/mspec.2006.1604826en
dcterms.referencesImperva. (2020). Honeypot.en
dcterms.referencesInstitute for Disease Modeling. (2020). SEIR and SEIRS models. http://idmod.org/docs/tuberculosis/model-seir.htmlen
dcterms.referencesIoT-Analytics. (2019). The Top 10 IoT Segments in 2018 – based on 1,600 real IoT projects. IoT-Analytics. https://iot-analytics.com/top-10-iot-segments-2018-realiot-projects/en
dcterms.referencesIpropertymanagement.com. (2020). Smart Home Statistics [2020]: Growth of Connected Devices. https://ipropertymanagement.com/research/iot-statisticsen
dcterms.referencesITU. (2012). Overview of the Internet of things. Series Y: Global Information Infrastructure, Internet Protocol Aspects and next-Generation Networks - Frameworks and Functional Architecture Models, 22.en
dcterms.referencesJankowski, S. (2014). The Sectors Where the Internet of Things Really Matters. Harvard Business Review - Interneen
dcterms.referencesJerkins, J. A. (2017). Motivating a market or regulatory solution to IoT insecurity with the Mirai botnet code. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference, CCWC 2017. https://doi.org/10.1109/CCWC.2017.7868464en
dcterms.referencesKaspersky Lab. (2016). Daños Causados por el Malware. https://encyclopedia.kaspersky.es/knowledge/damage-caused-by-malware/es_CO
dcterms.referencesKhan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411. https://doi.org/10.1016/j.future.2017.11.022en
dcterms.referencesKhan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, possible applications and key challenges. Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 257– 260. https://doi.org/10.1109/FIT.2012.53en
dcterms.referencesKolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and other botnets. Computer, 50(7), 80–84. https://doi.org/10.1109/MC.2017.2en
dcterms.referencesLan, L. (2012). Study on security architecture in the internet of things. Proceedings of 2012 International Conference on Measurement, Information and Control, MIC 2012, 1, 374–377. https://doi.org/10.1109/MIC.2012.6273274en
dcterms.referencesLimaye, A., & Adegbija, T. (2017). A Workload Characterization for the Internet of Medical Things (IoMT). Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2017-July, 302–307. https://doi.org/10.1109/ISVLSI.2017.60en
dcterms.referencesLoras R, E. (2000). What is a Honeypot? Sans. https://www.sans.org/securityresources/idfaq/what-is-a-honeypot/1/9en
dcterms.referencesMahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2016). Internet of things (IoT) security: Current status, challenges and prospective measures. 2015 10th International Conference for Internet Technology and Secured Transactions, ICITST 2015, 336–341. https://doi.org/10.1109/ICITST.2015.7412116en
dcterms.referencesMaidstone, R. (2012). Discrete Event Simulation, System Dynamics and Agent Baseden
dcterms.referencesMakalesi, A., Atac, C., & Akleylek, S. (2019). A Survey on Security Threats and Solutions in the Age of IoT. European Journal of Science and Technology, 15(15), 36–42. https://doi.org/10.31590/ejosat.494066en
dcterms.referencesMartinov, G. M., Pushkov, R. L., & Evstafieva, S. V. (2020). Collecting diagnostic operational data from CNC machines during operation process. IOP Conference Series: Materials Science and Engineering, 709(3). https://doi.org/10.1088/1757- 899X/709/3/033051en
dcterms.referencesMasood, R., Ghazia, U. E., & Anwar, Z. (2011). SWAM: Stuxnet worm analysis in Metasploit. Proceedings - 2011 9th International Conference on Frontiers of Information Technology, FIT 2011, 142–147. https://doi.org/10.1109/FIT.2011.34en
dcterms.referencesMcAfee. (n.d.). SOLUTION BRIEF 1 Respond Faster to Security Threats with ServiceNow and McAfee Respond Faster to Security Threats with ServiceNow and McAfee.en
dcterms.referencesMcDermott, C. D., Petrovski, A. V, & Majdani, F. (2018). Towards situational awareness of botnet activity in the internet of things. 2018 International Conference on Cyber Situational Awareness, Data Analytics and Assessment, CyberSA 2018. https://doi.org/10.1109/CyberSA.2018.8551408en
dcterms.referencesMilosevic, J., Regazzoni, F., & Malek, M. (2017). Malware threats and solutions for trustworthy mobile systems design. Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment, 149–167. https://doi.org/10.1007/978-3-319-44318-8_8en
dcterms.referencesMishra, B. K., & Jha, N. (2010). SEIQRS model for the transmission of malicious objects in computer network. Applied Mathematical Modelling, 34(3), 710–715. https://doi.org/10.1016/j.apm.2009.06.011en
dcterms.referencesMolina García, J. A. (2019). La importancia de la gestión de riesgos y seguridad en el internet de las cosas (IOT). http://repository.unipiloto.edu.co/handle/20.500.12277/6754es_CO
dcterms.referencesMuñoz, C. (2017). Reaper IoT, la botnet que tiene secuestrados a miles de dispositivos y mantiene en alerta a investigadores. FayerWayer. https://www.fayerwayer.com/2017/10/reaper-iot-la-botnet-que-tiene- 152 secuestrados-miles-de-dispositivos-y-mantiene-en-alerta-investigadores/es_CO
dcterms.referencesNausheen, F., & Begum, S. H. (2018). Healthcare IoT: Benefits, vulnerabilities and solutions. Proceedings of the 2nd International Conference on Inventive Systems and Control, ICISC 2018, 517–522. https://doi.org/10.1109/ICISC.2018.8399126en
dcterms.referencesNebbione, G., & Calzarossa, M. C. (2020). Security of IoT Application Layer Protocols: Challenges and Findings. Future Internet, 12(3), 55. https://doi.org/10.3390/fi12030055en
dcterms.referencesNewman, L. H. (2016). The botnet that broke the Internet isn’t going away. Wireden
dcterms.referencesNewsweek. (2020). Weathering the Perfect Storm. https://www.newsweek.com/vantage-weathering-perfect-storm-1493513en
dcterms.referencesNurse, J. R. C., Creese, S., & De Roure, D. (2017). Security Risk Assessment in Internet of Things Systems. IT Professional, 19(5), 20–26. https://doi.org/10.1109/MITP.2017.3680959en
dcterms.referencesPalo Alto. (2020). 2020 Unit 42 IoT Threat Report. In Palo Alto. https://start.paloaltonetworks.com/unit-42-iot-threat-reporten
dcterms.referencesPaul, M., & Yadegari, B. (2013). The Stuxnet Worm. Chemical Engineering Vol, New York, 5(Jun), 44–46. https://www2.cs.arizona.edu/%7B~%7Dcollberg/Teaching/466- 566/2012/Resources/presentations/topic9- final/report.pdf%0Ahttp://danlev.deviantart.com/journal/More-Like-This-ANew-Way-To-Explore-deviantART-331552297en
dcterms.referencesPeng, T., Leckie, C., & Ramamohanarao, K. (2007). Survey of network-based defense mechanisms countering the DoS and DDoS problems. ACM Computing Surveys, 39(1). https://doi.org/10.1145/1216370.1216373en
dcterms.referencesPerez, C. (2017). Reaper IoT botnet. Tenable, 1–2. https://esla.tenable.com/blog/reaper-iot-botneten
dcterms.referencesRadware. (2017). ERT Threat Alert Reaper Botnet. 1–4en
dcterms.referencesRambus. (2020). Industrial IoT: Threats and Countermeasures. https://www.rambus.com/iot/industrial-ioten
dcterms.referencesRao, A. R., & Clarke, D. (2020). Perspectives on emerging directions in using IoT devices in blockchain applications. Internet of Things, 10(xxxx), 100079. https://doi.org/10.1016/j.iot.2019.100079en
dcterms.referencesRenzi, A. B., & Freitas, S. (2015). The Delphi Method for Future Scenarios Construction. Procedia Manufacturing, 3, 5785–5791. https://doi.org/10.1016/j.promfg.2015.07.826en
dcterms.referencesRíos, S. (2014). ITIL v3 Manual íntegro. B-Able, 101. https://doi.org/10.1080/08820130500496811es_CO
dcterms.referencesS, S., & L, M. (2015). A Survey on Malware Propagation Analysis and Prevention Model. International Journal of Advancements in Technology, 06(02). https://doi.org/10.4172/0976-4860.1000148en
dcterms.referencesSarmiento-Vásquez, A. T. (2016). Análisis comparativo de los paradigmas de simulación. http://repositorio.ulima.edu.pe/handle/ulima/3296es_CO
dcterms.referencesSchneier, B. (2016). Lessons From the Dyn DDoS Attack. Schneier on Security. https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.htmlen
dcterms.referencesSCmagazine. (2016). DDoS attack Friday hits Twitter, Reddit, Spotify and others.en
dcterms.referencesShanbhag, R., & Shankarmani, R. (2015). Architecture for Internet of Things to minimize human intervention. 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015, 2348–2353. https://doi.org/10.1109/ICACCI.2015.7275969en
dcterms.referencesSharma, N., Shamkuwar, M., & Singh, I. (2019). The history, present and future with iot. Intelligent Systems Reference Library, 154, 27–51. https://doi.org/10.1007/978-3-030-04203-5_3en
dcterms.referencesSharmeen, S., Huda, S., Abawajy, J. H., Ismail, W. N., & Hassan, M. M. (2018). Malware Threats and Detection for Industrial Mobile-IoT Networks. IEEE Access, 6, 15941–15957. https://doi.org/10.1109/ACCESS.2018.2815660en
dcterms.referencesSinanovic, H., & Mrdovic, S. (2017). Analysis of Mirai malicious software. 2017 25th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2017. https://doi.org/10.23919/SOFTCOM.2017.8115504en
dcterms.referencesSklavos, N. (2017). Malware in IoT Software and Hardware. May, 8–11.en
dcterms.referencesSouri, A., & Hosseini, R. (2018). A state-of-the-art survey of malware detection approaches using data mining techniques. Human-Centric Computing and Information Sciences, 8(1). https://doi.org/10.1186/s13673-018-0125-xen
dcterms.referencesStallings, W. (2015). The Internet of Things: Network and Security Architecture. The Internet Protocol Journal, 18(4), 1–32. https://doi.org/10.1525/jsah.2015.74.4.406en
dcterms.referencesSuresh, P., Daniel, J. V., & V.Parthasarathy. (2014). A state of the art review on the Internet of Things (IoT). International Conference on Science Engineering and Management Research (ICSEMR), 4–5.en
dcterms.referencesThorhallsdóttir, K. (2018). Impact and probability in risk assessment . 2–9. http://apppm.man.dtu.dk/index.php/Impact_and_Probability_in_Risk_Assessme nten
dcterms.referencesVyas, K. K., & Shrimali, D. T. (2017). Congestion Control and Protected Broadcast of Data Using FTP and TELNET in a Cloud Network. An International Journal of Engineering Sciences, 6913(63019), 112–125.en
dcterms.referencesWang, A., Liang, R., Liu, X., Zhang, Y., Chen, K., & Li, J. (2017). An inside look at IoT malware. Lecture Notes of the Institute for Computer Sciences, SocialInformatics and Telecommunications Engineering, LNICST, 202, 176–186. https://doi.org/10.1007/978-3-319-60753-5_19en
dcterms.referencesWhat are the Differences Between M2M and IoT? | Electronics For You. (n.d.). Retrieved August 4, 2020, from https://www.electronicsforu.com/resources/learnelectronics/difference-between-m2m-and-ioten
dcterms.referencesZawoad, S., & Hasan, R. (2015). FAIoT: Towards Building a Forensics Aware Eco System for the Internet of Things. Proceedings - 2015 IEEE International Conference on Services Computing, SCC 2015, 279–284. https://doi.org/10.1109/SCC.2015.46en
dcterms.referencesZhang, Z.-K., Cho, M. C. Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., & Shieh, S. (2014). IoT Security: Ongoing Challenges and Research Opportunities. 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, 230–234. https://doi.org/10.1109/SOCA.2014.58en
dcterms.referencesZhaosheng, Z., Zhi, J. F., Guohan, L., Phil, R., Yan, C., & Keesook, H. (2008). Botnet research survey. Proceedings - International Computer Software and Applications Conference, 967–972. https://doi.org/10.1109/COMPSAC.2008.205en
dc.agrosaviaAvella, J. R. (2016). Delphi panels: Research design, procedures, advantages, and challenges. International Journal of Doctoral Studies, 11, 305–321. https://doi.org/10.28945/3561en
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Gerencia de Ingenieríaes_CO
thesis.degree.nameMagíster en Gerencia de Ingenieríaes_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional