Mostrar el registro sencillo del ítem
Determinación del efecto de la deficiencia de vitamina A sobre la homeostasis del hierro y su estado en modelo murino
dc.contributor.advisor | Díaz Barrera, Luis Eduardo | |
dc.contributor.author | Restrepo Gallego, Mauricio | |
dc.date.accessioned | 12/17/2020 14:39 | |
dc.date.available | 12/17/2020 14:39 | |
dc.date.issued | 2020-10-26 | |
dc.identifier.uri | http://hdl.handle.net/10818/46055 | |
dc.description | 122 páginas | es_CO |
dc.description.abstract | Iron deficiency anemia (IDA) and vitamin A deficiency (VAD) belong to the micronutrient deficiencies defined by the WHO as worldwide concern. In Colombia, IDA prevalence for children from 1 to 4 years old is 14.8% and anemia is 24.7% for children from 6 to 59 months old, it is remarkable in a country where is mandatory to fortify wheat flour with iron since 1996. On the other hand, VAD prevalence for children from 1 to 4 years old is 27.3% and, in this case, there is no mandatory fortification programs in the country. Interactions between micronutrients are not unknown on health and nutrition field, the most recognized is that between calcium and vitamin D; besides, there is evidence from an epidemiological perspective that VAD and ID are linked in some way, fact supported for some studies using cellular and animal models. This study has the hypothesis that vitamin A regulates in some way the iron homeostasis and its metabolic role, and has three approaches: weight gain, biochemical and hematological parameters and molecular markers of iron homeostasis. We designed a study with four experimental diets with different ratios of iron and vitamin A (sufficient, insufficient and deficient) and a control diet with a sufficient supply of both micronutrients. The quantity of animals was calculated statistically giving seven animals per group for 35 animals. The rats started the experiment at weaning (21 days-old) and received food and water at libitum for six weeks, during this time food intake and weight were recorded each week. At sixth week the animals were euthanized and samples from blood and tissues of interest (liver, spleen and duodenum) were taken for analysis of biochemical and hematological indicators in blood and PCR and Western Blot test in tissues for the analysis of hepcidin, ferritin, transferrin receptors, transferrin and interleukin-6 as proteins of interest. | en |
dc.description.abstract | La anemia por deficiencia de hierro (IDA) y la deficiencia de vitamina A (VAD) hacen parte del grupo de las deficiencias por micronutrientes definidas por la OMS como de interés mundial. En el caso de Colombia, la prevalencia de IDA en niños de 1 a 4 años es de 14.8% y la anemia está en 24.7% para niños entre 6 y 59 meses, algo paradójico si se tiene en cuenta que desde 1996 es obligatorio fortificar la harina de trigo con hierro. De otro lado, la prevalencia de VAD es de 27.3% para el mismo grupo poblacional, en este caso hasta el día de hoy no existe ningún tipo de fortificación obligatoria en el país. Las interacciones entre nutrientes no son algo desconocido en el campo de la salud y la nutrición, la más reconocida es la existente entre calcio y vitamina D; además, existe evidencia desde el punto de vista epidemiológico de que la VAD y la ID tienen algún tipo de relación, hecho que ha sido soportado por algunos estudios en modelos celulares y animales. Este estudio parte de la hipótesis de que la vitamina A regula de alguna forma la homeostasis del hierro y su rol metabólico, y aborda tres enfoques: ganancia de peso, parámetros bioquímicos y hematológicos y biomarcadores de la homeostasis del hierro. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Vitamina A | es_CO |
dc.subject | Anemia | es_CO |
dc.subject | Homeostasis | es_CO |
dc.title | Determinación del efecto de la deficiencia de vitamina A sobre la homeostasis del hierro y su estado en modelo murino | es_CO |
dc.type | doctoral thesis | es_CO |
dc.identifier.local | 279977 | |
dc.identifier.local | TE11055 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dc.subject.armarc | Vitamina A | es_CO |
dc.subject.armarc | Anemia | es_CO |
dc.subject.armarc | Homeostasis | es_CO |
dcterms.references | Ganz T. Iron homeostasis: fitting the puzzle pieces together. Cell Metab. 2008;7(4):288–90 | en |
dcterms.references | Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, et al. Physiology of iron metabolism. Transfus Med Hemotherapy. 2014;41(3):213–21 | en |
dcterms.references | Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington DC: The National Academies Press; 2001. p. 290–393 | en |
dcterms.references | Mesías M, Seiquer I, Navarro MP. Iron nutrition in adolescence. Crit Rev Food Sci Nutr. 2013;53(11):1226–37. | en |
dcterms.references | Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, et al. Iron metabolism in infants: Influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31(2):304–9. | en |
dcterms.references | Grotto HZW. Fisiologia e metabolismo do ferro. Rev Bras Hematol Hemoter. 2010;32:08–17. | en |
dcterms.references | Saito H. Metabolism of iron stores. Nagoya J Med Sci. 2014;76(3–4):235–54. | en |
dcterms.references | Muñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15(37):4617–26. | en |
dcterms.references | Cediel G, Olivares M, Gaitán D, Flores S, Brito A, Pizarro F. Effect of trypsin and mucin on heme iron bioavailability in humans. Biol Trace Elem Res. 2012;150(1–3):37–41. | en |
dcterms.references | Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26:115– 9. | en |
dcterms.references | Brasselagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011;140(4):1261–71 | en |
dcterms.references | Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell. 2005;122(5):789–801 | en |
dcterms.references | Leong W-I, Lönnerdal B. Iron nutrition. In: Iron Physiology and Pathophysiology in Humans. New York: Humana Press; 2012. p. 81–99. | en |
dcterms.references | Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2015;1852(7):1347–59. Available from: http://dx.doi.org/10.1016/j.bbadis.2015.03.011 | en |
dcterms.references | Andrews NC. The iron transporter DMT1. Int J Biochem Cell Biol. 1999;31(10):991–4. | en |
dcterms.references | Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, et al. DMT1: A mammalian transporter for multiple metals. BioMetals. 2003;16(1):41–54. | en |
dcterms.references | Illing AC, Shawki A, Cunningham CL, Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem. 2012;287(36):30485–96. | en |
dcterms.references | Ríos-Castillo I, Olivares M, Brito A, de Romaña DL, Pizarro F. One-month of calcium supplementation does not affect iron bioavailability: a randomized controlled trial. Nutrition. 2014;30(1):44–8 | en |
dcterms.references | Vázquez M, Vélez D, Devesa V, Puig S. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology. 2015;331:119–24 | en |
dcterms.references | Latunde-Dada GO, Van der Westhuizen J, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells, Mol Dis. 2002;29(3):356–60 | en |
dcterms.references | Oakhill JS, Marritt SJ, Gareta EG, Cammack R, McKie AT. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta - Bioenerg. 2008;1777(3):260–8. | en |
dcterms.references | Luo X, Hill M, Johnson A, Latunde-Dada GO. Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells. Biochim Biophys Acta - Gen Subj. 2014;1840(1):106–12. | en |
dcterms.references | Lane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta - Mol Cell Res [Internet]. 2015;1853(5):1130–44. Available from: http://dx.doi.org/10.1016/j.bbamcr.2015.01.021 | en |
dcterms.references | White KN, Conesa C, Sánchez L, Amini M, Farnaud S, Lorvoralak C, et al. The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta - Gen Subj. 2012;1820(3):411–6. | en |
dcterms.references | Xu E, Chen M, Zheng J, Maimaitiming Z, Zhong T, Chen H. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Biochem Biophys Res Commun. 2018;503(3):1905–10. | en |
dcterms.references | Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua BK, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17(May):432–9. | en |
dcterms.references | Mendiburo MJ, Le Blanc S, Espinoza A, Pizarro F, Arredondo M. Transepithelial heme-iron transport: Effect of heme oxygenase overexpression. Eur J Nutr. 2011;50(5):363–71. | en |
dcterms.references | Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58. | en |
dcterms.references | Ge XH, Wang Q, Qian ZM, Zhu L, Du F, Yung WH, et al. The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. J Nutr Biochem. 2009;20(11):860–5 | en |
dcterms.references | Viatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie. 2009;91:1223–8 | en |
dcterms.references | Singh B, Arora S, Agrawal P, Gupta SK. Hepcidin: A novel peptide hormone regulating iron metabolism. Clin Chim Acta. 2011;412:823–30. | en |
dcterms.references | Vyoral D. Hepcidin : A direct link between iron metabolism and immunity. 2005;37:1768–73. | en |
dcterms.references | Kwapisz J, Slomka A, Zekanowska E. Hepcidin and its role in iron homeostasis. J Int Fed Clin Chem Lab Med. 2009;20(2):124–8. | en |
dcterms.references | Tussing-Humphreys L, Pustacioglu C, Nemeth E, Braunschweig C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J Acad Nutr Diet. 2012;112(3):391–400. | en |
dcterms.references | Przybyszewska J, Żekanowska E. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Gastroenterol Rev. 2014;4(4):208–13. | en |
dcterms.references | Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10 | en |
dcterms.references | da Cunha MSB, Siqueira EMA, Trindade LA, Arruda SF. Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis. J Nutr Biochem. 2014;25(10):1035–44. | en |
dcterms.references | Raha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SRW, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci [Internet]. 2015;16(1):1–12. Available from: ??? | en |
dcterms.references | Camaschella C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017;31(4):225–33. | en |
dcterms.references | Wilkinson N, Pantopoulos K. The IRP/IRE system in vivo: Insights from mouse models. Front Pharmacol. 2014;5 JUL(July):1–15. | en |
dcterms.references | Bhutta ZA, Salam RA, Das JK. Meeting the challenges of micronutrient malnutrition in the developing world. Br Med Bull. 2013;106(1):7–17 | en |
dcterms.references | Lynch SR. Interaction of iron with other nutrients. Nutr Rev. 1997;55(4):102–10. | en |
dcterms.references | Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of nutrition for development (BOND)-iron review. J Nutr. 2018;148:1001S-1067S. | en |
dcterms.references | WHO/ FAO. Vitamin and mineral requirements in human nutrition. 2004;139. | en |
dcterms.references | Ball GFM. Vitamin A: retinoids and the provitamin A carotenoids. In: Vitamins in Food Analysis, Bioavailability, and Stability. CRC Press - Taylor & Francis; 2006. p. 39–92. | en |
dcterms.references | Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med. 2014;3(2):453–79. | en |
dcterms.references | Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients. 2013;5(9):3563–81 | en |
dcterms.references | WHO. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015. | en |
dcterms.references | Lozoff B, Georgieff MK. Iron Deficiency and Brain Development. Semin Pediatr Neurol. 2006;13(3):158–65. | en |
dcterms.references | Stoltzfus RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr. 2001;131(2S-2):697S-700S; discussion 700S-701S. | en |
dcterms.references | WHO. Iron deficiency anaemia: assessment, prevention, and control. 2001. | en |
dcterms.references | WHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. 2011. | en |
dcterms.references | WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switz World Heal Organ. 2011;1–6. | en |
dcterms.references | Grantham-Mcgregor S, Baker-Henningham H. Iron deficiency in childhood: Causes and consequences for child development. Ann Nestle. 2010;68(3):105–19. | en |
dcterms.references | WHO. Worldwide prevalence of anaemia. [Internet]. 2008 [cited 2018 Mar 28]. Available from: whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf | en |
dcterms.references | Sandström B. Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr. 2001;85 Suppl 2:S181–5. | en |
dcterms.references | Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9. | en |
dcterms.references | Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387:907–16 | en |
dcterms.references | Jiang S, Wang C, Lan L, Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012;28(3):281–7. | en |
dcterms.references | Koessler KK, Maurer S, Loughlin R. The relation of anemia, primary and secondary, to vitamin A deficiency. JAMA. 1926;87(7):476–82. | en |
dcterms.references | Hodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, et al. Hematopoietic studies in Vitamin A deficiency. Am J Clin Nutr. 1978;(May):876–85. | en |
dcterms.references | Roodenburg AJC, Van Pelt AMM, West CE, Beynen AC. Effect of vitamin A supplementation for 3 days on iron metabolism, liver function indicator enzymes and differential cell counts in bone marrow of rats with severe vitamin A deficiency. Nutr Res. 1996;16(11–12):1933–41. | en |
dcterms.references | Roodenburg AJC, West CE, Beynen AC. Vitamin A status affects the efficacy of iron repletion in rats with mild iron deficiency. J Nutr Biochem. 1996;7(2):99–105. | en |
dcterms.references | Roodenburg AJC, West CE, Beguin Y, Van Dijk JE, Van Eijk HG, Marx JJM, et al. Indicators of erythrocyte formation and degradation in rats with either vitamin A or iron deficiency. J Nutr Biochem. 2000;11(4):223–30. | en |
dcterms.references | Palafox NA, Gamble M V., Dancheck B, Ricks MO, Briand K, Semba RD. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition. 2003;19(5):405–8. | en |
dcterms.references | Hamdy a M, Abdel Aleem MM, El-Shazly a a. Maternal vitamin A deficiency during pregnancy and its relation with maternal and neonatal hemoglobin concentrations among poor Egyptian families. ISRN Pediatr. 2013;2013:652148 | en |
dcterms.references | Chen K, Zhang X, Li T yu, Chen L, Wei X ping, Qu P, et al. Effect of vitamin A, vitamin A plus iron and multiple micronutrient-fortified seasoning powder on infectious morbidity of preschool children. Nutrition. 2011;27(4):428–34 | en |
dcterms.references | afari SM, Heidari G, Nabipour I, Amirinejad R, Assadi M, Bargahi A, et al. Serum retinol levels are positively correlated with hemoglobin concentrations, independent of iron homeostasis: A population-based study. Nutr Res. 2013;33(4):279–85. | en |
dcterms.references | Arguello MA, Schulze KJ, Wu LSF, Dreyfuss ML, Khatry SK, Christian P, et al. Circulating IGF-1 may mediate improvements in haemoglobin associated with vitamin A status during pregnancy in rural Nepalese women. Asia Pac J Clin Nutr. 2015;24(1):128–37 | en |
dcterms.references | Villamor E, Marín C, Mora-Plazas M, Oliveros H. Micronutrient status in middle childhood and age at menarche: Results from the Bogotá School Children Cohort. Br J Nutr. 2017;118(12):1097–105. | en |
dcterms.references | Arruda SF, Siqueira EM de A, de Valência FF. Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition. 2009;25(4):472–8. | en |
dcterms.references | Citelli M, Bittencourt LL, Da Silva SV, Pierucci APT, Pedrosa C. Vitamin a modulates the expression of genes involved in iron bioavailability. Biol Trace Elem Res. 2012;149(1):64–70. | en |
dcterms.references | García Y, Díaz-Castro J. Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review. Animal. 2013;7(10):1651–8. | en |
dcterms.references | Cao C, Thomas CE, Insogna KL, Brien KOO. Duodenal absorption and tissue utilization of dietary heme and non-heme iron differ in rats. J Nutr. 2014;144(C):1710–7. | en |
dcterms.references | Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303 | en |
dcterms.references | Mullier F, Lainey E, Fenneteau O, da Costa L, Schillinger F, Bailly N, et al. Additional erythrocytic and reticulocytic parameters helpful for diagnosis of hereditary spherocytosis: Results of a multicentre study. Ann Hematol. 2011;90:759–68. | en |
dcterms.references | Thermo Scientific. NanoDrop Nucleic Acid Technical Guide. 2010;Revised 11:1–30. Available from: https://tools.thermofisher.com/content/sfs/brochures/Thermo-Scientific-NanoDrop-ProductsNucleic-Acid-Technical-Guide-EN.pdf | en |
dcterms.references | Kong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen W Bin, et al. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res. 2014;160(2):258–67. | en |
dcterms.references | Malik IA, Wilting J, Ramadori G, Naz N. Reabsorption of iron into acutely damaged rat liver: A role for ferritins. World J Gastroenterol. 2017;23(41):7347–58. | en |
dcterms.references | Sheikh N, Batusic DS, Dudas J, Tron K, Neubauer K, Saile B, et al. Hepcidin and hemojuvelin gene expression in rat liver damage: in vivo and in vitro studies. Am J Physiol Liver Physiol. 2006;291(3):G482–90. | en |
dcterms.references | Jacob Filho W, Lima CC, Paunksnis MRR, Silva AA, Perilhão MS, Caldeira M, et al. Reference database of hematological parameters for growing and aging rats. Aging Male. 2018;21(2):145–8. | en |
dcterms.references | National Research Council. Nutrient requirements of laboratory animals,. Nutrient Requirements of Laboratory Animals,. 2015. | en |
dcterms.references | Saraiva BC, Soares MC, dos Santos LC, Pereira SCL, Horta PM. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years. J Pediatr (Rio J). 2014;90(6):593–9. | en |
dcterms.references | Sales MC, de Azevedo Paiva A, de Queiroz D, França Costa RA, Lins da Cunha MA, Pedraza DF. Nutritional status of iron in children from 6 to 59 months of age and its relation to vitamin A deficiency. Nutr Hosp. 2013;28(3):734–40. | en |
dcterms.references | Semba RD, Bloem MW. The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr. 2002;56(4):271–81. | en |
dcterms.references | Ameny MA, Raila J, Walzel E, Schweigert FJ. Effect of iron and/or vitamin A re-supplementation on vitamin A and iron status of rats after a dietary deficiency of both components. J Trace Elem Med Biol. 2002;16(3):175–8 | en |
dcterms.references | Buttarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Lab Hematol. 2016;38(Suppl 1):123–32. | en |
dcterms.references | Dewamitta SR, Joseph C, Purton LE, Walkley CR. Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors. Br J Haematol. 2014;164(2):280–5. | en |
dcterms.references | Honda H, Kobayashi Y, Onuma S, Shibagaki K, Yuza T, Hirao K, et al. Associations among erythroferrone and biomarkers of erythropoiesis and iron metabolism, and treatment with longterm erythropoiesis-stimulating agents in patients on hemodialysis. PLoS One. 2016;11(3):1–10. | en |
dcterms.references | Hoofnagle AN. Harmonization of blood-based indicators of iron status: making the hard work matter. Am J Clin Nutr. 2017;106(Id):1615S-1619S | en |
dcterms.references | Aulakh R, Sohi I, Singh T, Kakkar N. Red cell distribution width (RDW) in the diagnosis of iron deficiency with microcytic hypochromic anemia. Indian J Pediatr. 2009;76(3):265–8 | en |
dcterms.references | Amine EK, Corey J, Hegsted DM, Hayes KC. Comparative Hematology during Deficiencies of Iron and Vitamin A in the Rat. J Nutr. 1970;100(9):1033–40. | en |
dcterms.references | Okonko DO, Mandal AKJ, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58(12):1241–51. | en |
dcterms.references | Berda-Haddad Y, Faure C, Boubaya M, Arpin M, Cointe S, Frankel D, et al. Increased mean corpuscular haemoglobin concentration: artefact or pathological condition? Int J Lab Hematol. 2017;39(1):32–41. | en |
dcterms.references | Cossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28(6):2151–6. | en |
dcterms.references | Moraal M, Leenaars PPAM, Arnts H, Smeets K, Savenije BS, Curfs JHAJ, et al. The influence of food restriction versus ad libitum feeding of chow and purified diets on variation in body weight, growth and physiology of female wistar rats. Lab Anim. 2012;46(2):101–7. | en |
dcterms.references | Petranovic D, Batinac T, Petranovic D, Ruzic A, Ruzic T. Iron deficiency anaemia influences cognitive functions. Med Hypotheses. 2008;70(1):70–2. | en |
dcterms.references | Barber T, Borrás E, Torres L, García C, Cabezuelo F, Lloret A, et al. Vitamin A deficiency causes oxidative damage to liver mitochondria in rats. Free Radic Biol Med. 2000;29(1):1–7. | en |
dcterms.references | Arreguín A, Ribot J, Mušinović H, von Lintig J, Palou A, Bonet ML. Dietary vitamin A impacts DNA methylation patterns of adipogenesis-related genes in suckling rats. Arch Biochem Biophys. 2018;650:75–84. | en |
dcterms.references | Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci. 2005;102(6):1906–10 | en |
dcterms.references | Babitt JL, Lin HY. Molecular Mechanisms of Hepcidin Regulation: Implications for the Anemia of CKD. Am J Kidney Dis. 2010;55(4):726–41. | en |
dcterms.references | Schmidt PJ, Fleming MD. Modulation of hepcidin as therapy for primary and secondary iron overload disorders: Preclinical models and approaches. Hematol Oncol Clin North Am. 2014;28(2):387–401. | en |
dcterms.references | Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147–53. | en |
dcterms.references | Namaste SML, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106:359S-71S | en |
dcterms.references | Restrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr [Internet]. 2020;0(0):1–14. Available from: https://doi.org/10.1080/10408398.2020.1787326 | en |
dcterms.references | Chiou YL, Chen YH, Ke T, Ko WS. The effect of increased oxidative stress and ferritin in reducing the effectiveness of therapy in chronic hepatitis C patients. Clin Biochem. 2012;45(16–17):1389– 93. | en |
dcterms.references | Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748–73. | en |
dcterms.references | Vanoaica L, Darshan D, Richman L, Schümann K, Kühn LC. Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab. 2010;12(3):273–82. | en |
dcterms.references | Han L, Liu Y, Lu M, Wang H, Tang F. Retinoic acid modulates iron metabolism imbalance in anemia of inflammation induced by LPS via reversely regulating hepcidin and ferroportin expression. Biochem Biophys Res Commun. 2018;507(1–4):280–5. | en |
dcterms.references | Vuralli D, Tumer L, Hasanoglu A, Biberoglu G, Pasaoglu H. Vitamin A status and factors associated in healthy school-age children. Clin Nutr. 2014;33(3):509–12 | en |
dcterms.references | Feng YL, Xie M, Tang J, Huang W, Zhang Q, Hou SS. Effects of vitamin A on growth performance and tissue retinol of starter White Pekin ducks. Poult Sci. 2019;98(5):2189–92 | en |
dcterms.references | Koch JFA, Sabioni RE, Aguilar Aguilar FA, Lorenz EK, Cyrino JEP. Vitamin A requirements of dourado (Salminus brasiliensis): Growth performance and immunological parameters. Aquaculture [Internet]. 2018;491(September 2017):86–93. Available from: https://doi.org/10.1016/j.aquaculture.2018.03.017 | en |
dcterms.references | Hurrell R, Ranum P, De Pee S, Biebinger R, Hulthen L, Johnson Q, et al. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of Current national wheat flour fortification programs. Food Nutr Bull. 2010;31(1 SUPPL.):7–21 | en |
dcterms.references | Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology. 2013;139(1):1–10 | en |
dcterms.references | Ganz T. Iron homeostasis: fitting the puzzle pieces together. Cell Metab. 2008;7(4):288–90 | eng |
dcterms.references | Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, et al. Physiology of iron metabolism. Transfus Med Hemotherapy. 2014;41(3):213–21 | eng |
dcterms.references | Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington DC: The National Academies Press; 2001. p. 290–393 | eng |
dcterms.references | Mesías M, Seiquer I, Navarro MP. Iron nutrition in adolescence. Crit Rev Food Sci Nutr. 2013;53(11):1226–37. | eng |
dcterms.references | Ke C, Lan Z, Hua L, Ying Z, Humina X, Jia S, et al. Iron metabolism in infants: Influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31(2):304–9. | eng |
dcterms.references | Grotto HZW. Fisiologia e metabolismo do ferro. Rev Bras Hematol Hemoter. 2010;32:08–17. | eng |
dcterms.references | Saito H. Metabolism of iron stores. Nagoya J Med Sci. 2014;76(3–4):235–54. | eng |
dcterms.references | Muñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15(37):4617–26. | eng |
dcterms.references | Cediel G, Olivares M, Gaitán D, Flores S, Brito A, Pizarro F. Effect of trypsin and mucin on heme iron bioavailability in humans. Biol Trace Elem Res. 2012;150(1–3):37–41. | eng |
dcterms.references | Fuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26:115– 9. | eng |
dcterms.references | Brasselagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011;140(4):1261–71 | eng |
dcterms.references | Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell. 2005;122(5):789–801 | eng |
dcterms.references | Leong W-I, Lönnerdal B. Iron nutrition. In: Iron Physiology and Pathophysiology in Humans. New York: Humana Press; 2012. p. 81–99. | eng |
dcterms.references | Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2015;1852(7):1347–59. Available from: http://dx.doi.org/10.1016/j.bbadis.2015.03.011 | eng |
dcterms.references | Andrews NC. The iron transporter DMT1. Int J Biochem Cell Biol. 1999;31(10):991–4. | eng |
dcterms.references | Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, et al. DMT1: A mammalian transporter for multiple metals. BioMetals. 2003;16(1):41–54. | eng |
dcterms.references | Illing AC, Shawki A, Cunningham CL, Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem. 2012;287(36):30485–96. | eng |
dcterms.references | Ríos-Castillo I, Olivares M, Brito A, de Romaña DL, Pizarro F. One-month of calcium supplementation does not affect iron bioavailability: a randomized controlled trial. Nutrition. 2014;30(1):44–8 | eng |
dcterms.references | Vázquez M, Vélez D, Devesa V, Puig S. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology. 2015;331:119–24 | eng |
dcterms.references | Latunde-Dada GO, Van der Westhuizen J, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells, Mol Dis. 2002;29(3):356–60 | eng |
dcterms.references | Oakhill JS, Marritt SJ, Gareta EG, Cammack R, McKie AT. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta - Bioenerg. 2008;1777(3):260–8. | eng |
dcterms.references | Luo X, Hill M, Johnson A, Latunde-Dada GO. Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells. Biochim Biophys Acta - Gen Subj. 2014;1840(1):106–12. | eng |
dcterms.references | Lane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta - Mol Cell Res [Internet]. 2015;1853(5):1130–44. Available from: http://dx.doi.org/10.1016/j.bbamcr.2015.01.021 | eng |
dcterms.references | White KN, Conesa C, Sánchez L, Amini M, Farnaud S, Lorvoralak C, et al. The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta - Gen Subj. 2012;1820(3):411–6. | eng |
dcterms.references | Xu E, Chen M, Zheng J, Maimaitiming Z, Zhong T, Chen H. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Biochem Biophys Res Commun. 2018;503(3):1905–10. | eng |
dcterms.references | Chen M, Zheng J, Liu G, Xu E, Wang J, Fuqua BK, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17(May):432–9. | eng |
dcterms.references | Mendiburo MJ, Le Blanc S, Espinoza A, Pizarro F, Arredondo M. Transepithelial heme-iron transport: Effect of heme oxygenase overexpression. Eur J Nutr. 2011;50(5):363–71. | eng |
dcterms.references | Krishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58. | eng |
dcterms.references | Ge XH, Wang Q, Qian ZM, Zhu L, Du F, Yung WH, et al. The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. J Nutr Biochem. 2009;20(11):860–5 | eng |
dcterms.references | Viatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie. 2009;91:1223–8 | eng |
dcterms.references | Singh B, Arora S, Agrawal P, Gupta SK. Hepcidin: A novel peptide hormone regulating iron metabolism. Clin Chim Acta. 2011;412:823–30. | eng |
dcterms.references | Vyoral D. Hepcidin : A direct link between iron metabolism and immunity. 2005;37:1768–73. | eng |
dcterms.references | Kwapisz J, Slomka A, Zekanowska E. Hepcidin and its role in iron homeostasis. J Int Fed Clin Chem Lab Med. 2009;20(2):124–8. | eng |
dcterms.references | Tussing-Humphreys L, Pustacioglu C, Nemeth E, Braunschweig C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J Acad Nutr Diet. 2012;112(3):391–400. | eng |
dcterms.references | Przybyszewska J, Żekanowska E. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Gastroenterol Rev. 2014;4(4):208–13. | eng |
dcterms.references | Ganz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10 | eng |
dcterms.references | da Cunha MSB, Siqueira EMA, Trindade LA, Arruda SF. Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis. J Nutr Biochem. 2014;25(10):1035–44. | eng |
dcterms.references | Raha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SRW, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci [Internet]. 2015;16(1):1–12. Available from: ??? | eng |
dcterms.references | Camaschella C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017;31(4):225–33. | eng |
dcterms.references | Wilkinson N, Pantopoulos K. The IRP/IRE system in vivo: Insights from mouse models. Front Pharmacol. 2014;5 JUL(July):1–15. | eng |
dcterms.references | Bhutta ZA, Salam RA, Das JK. Meeting the challenges of micronutrient malnutrition in the developing world. Br Med Bull. 2013;106(1):7–17 | eng |
dcterms.references | Lynch SR. Interaction of iron with other nutrients. Nutr Rev. 1997;55(4):102–10. | eng |
dcterms.references | Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of nutrition for development (BOND)-iron review. J Nutr. 2018;148:1001S-1067S. | eng |
dcterms.references | WHO/ FAO. Vitamin and mineral requirements in human nutrition. 2004;139. | eng |
dcterms.references | Ball GFM. Vitamin A: retinoids and the provitamin A carotenoids. In: Vitamins in Food Analysis, Bioavailability, and Stability. CRC Press - Taylor & Francis; 2006. p. 39–92. | eng |
dcterms.references | Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med. 2014;3(2):453–79. | eng |
dcterms.references | Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients. 2013;5(9):3563–81 | eng |
dcterms.references | WHO. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015. | eng |
dcterms.references | Lozoff B, Georgieff MK. Iron Deficiency and Brain Development. Semin Pediatr Neurol. 2006;13(3):158–65. | eng |
dcterms.references | Stoltzfus RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr. 2001;131(2S-2):697S-700S; discussion 700S-701S. | eng |
dcterms.references | WHO. Iron deficiency anaemia: assessment, prevention, and control. 2001. | eng |
dcterms.references | WHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. 2011. | eng |
dcterms.references | WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switz World Heal Organ. 2011;1–6. | eng |
dcterms.references | Grantham-Mcgregor S, Baker-Henningham H. Iron deficiency in childhood: Causes and consequences for child development. Ann Nestle. 2010;68(3):105–19. | eng |
dcterms.references | WHO. Worldwide prevalence of anaemia. [Internet]. 2008 [cited 2018 Mar 28]. Available from: whqlibdoc.who.int/publications/2008/9789241596657_eng.pdf | eng |
dcterms.references | Sandström B. Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr. 2001;85 Suppl 2:S181–5. | eng |
dcterms.references | Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9. | eng |
dcterms.references | Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387:907–16 | eng |
dcterms.references | Jiang S, Wang C, Lan L, Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012;28(3):281–7. | eng |
dcterms.references | Koessler KK, Maurer S, Loughlin R. The relation of anemia, primary and secondary, to vitamin A deficiency. JAMA. 1926;87(7):476–82. | eng |
dcterms.references | Hodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, et al. Hematopoietic studies in Vitamin A deficiency. Am J Clin Nutr. 1978;(May):876–85. | eng |
dcterms.references | Roodenburg AJC, Van Pelt AMM, West CE, Beynen AC. Effect of vitamin A supplementation for 3 days on iron metabolism, liver function indicator enzymes and differential cell counts in bone marrow of rats with severe vitamin A deficiency. Nutr Res. 1996;16(11–12):1933–41. | eng |
dcterms.references | Roodenburg AJC, West CE, Beynen AC. Vitamin A status affects the efficacy of iron repletion in rats with mild iron deficiency. J Nutr Biochem. 1996;7(2):99–105. | eng |
dcterms.references | Roodenburg AJC, West CE, Beguin Y, Van Dijk JE, Van Eijk HG, Marx JJM, et al. Indicators of erythrocyte formation and degradation in rats with either vitamin A or iron deficiency. J Nutr Biochem. 2000;11(4):223–30. | eng |
dcterms.references | Palafox NA, Gamble M V., Dancheck B, Ricks MO, Briand K, Semba RD. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition. 2003;19(5):405–8. | eng |
dcterms.references | Hamdy a M, Abdel Aleem MM, El-Shazly a a. Maternal vitamin A deficiency during pregnancy and its relation with maternal and neonatal hemoglobin concentrations among poor Egyptian families. ISRN Pediatr. 2013;2013:652148 | eng |
dcterms.references | Chen K, Zhang X, Li T yu, Chen L, Wei X ping, Qu P, et al. Effect of vitamin A, vitamin A plus iron and multiple micronutrient-fortified seasoning powder on infectious morbidity of preschool children. Nutrition. 2011;27(4):428–34 | eng |
dcterms.references | afari SM, Heidari G, Nabipour I, Amirinejad R, Assadi M, Bargahi A, et al. Serum retinol levels are positively correlated with hemoglobin concentrations, independent of iron homeostasis: A population-based study. Nutr Res. 2013;33(4):279–85. | eng |
dcterms.references | Arguello MA, Schulze KJ, Wu LSF, Dreyfuss ML, Khatry SK, Christian P, et al. Circulating IGF-1 may mediate improvements in haemoglobin associated with vitamin A status during pregnancy in rural Nepalese women. Asia Pac J Clin Nutr. 2015;24(1):128–37 | eng |
dcterms.references | Villamor E, Marín C, Mora-Plazas M, Oliveros H. Micronutrient status in middle childhood and age at menarche: Results from the Bogotá School Children Cohort. Br J Nutr. 2017;118(12):1097–105. | eng |
dcterms.references | Arruda SF, Siqueira EM de A, de Valência FF. Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition. 2009;25(4):472–8. | eng |
dcterms.references | Citelli M, Bittencourt LL, Da Silva SV, Pierucci APT, Pedrosa C. Vitamin a modulates the expression of genes involved in iron bioavailability. Biol Trace Elem Res. 2012;149(1):64–70. | eng |
dcterms.references | García Y, Díaz-Castro J. Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review. Animal. 2013;7(10):1651–8. | eng |
dcterms.references | Cao C, Thomas CE, Insogna KL, Brien KOO. Duodenal absorption and tissue utilization of dietary heme and non-heme iron differ in rats. J Nutr. 2014;144(C):1710–7. | eng |
dcterms.references | Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303 | eng |
dcterms.references | Mullier F, Lainey E, Fenneteau O, da Costa L, Schillinger F, Bailly N, et al. Additional erythrocytic and reticulocytic parameters helpful for diagnosis of hereditary spherocytosis: Results of a multicentre study. Ann Hematol. 2011;90:759–68. | eng |
dcterms.references | Thermo Scientific. NanoDrop Nucleic Acid Technical Guide. 2010;Revised 11:1–30. Available from: https://tools.thermofisher.com/content/sfs/brochures/Thermo-Scientific-NanoDrop-ProductsNucleic-Acid-Technical-Guide-EN.pdf | eng |
dcterms.references | Kong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen W Bin, et al. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res. 2014;160(2):258–67. | eng |
dcterms.references | Malik IA, Wilting J, Ramadori G, Naz N. Reabsorption of iron into acutely damaged rat liver: A role for ferritins. World J Gastroenterol. 2017;23(41):7347–58. | eng |
dcterms.references | Sheikh N, Batusic DS, Dudas J, Tron K, Neubauer K, Saile B, et al. Hepcidin and hemojuvelin gene expression in rat liver damage: in vivo and in vitro studies. Am J Physiol Liver Physiol. 2006;291(3):G482–90. | eng |
dcterms.references | Jacob Filho W, Lima CC, Paunksnis MRR, Silva AA, Perilhão MS, Caldeira M, et al. Reference database of hematological parameters for growing and aging rats. Aging Male. 2018;21(2):145–8. | eng |
dcterms.references | National Research Council. Nutrient requirements of laboratory animals,. Nutrient Requirements of Laboratory Animals,. 2015. | eng |
dcterms.references | Saraiva BC, Soares MC, dos Santos LC, Pereira SCL, Horta PM. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years. J Pediatr (Rio J). 2014;90(6):593–9. | eng |
dcterms.references | Sales MC, de Azevedo Paiva A, de Queiroz D, França Costa RA, Lins da Cunha MA, Pedraza DF. Nutritional status of iron in children from 6 to 59 months of age and its relation to vitamin A deficiency. Nutr Hosp. 2013;28(3):734–40. | eng |
dcterms.references | Semba RD, Bloem MW. The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr. 2002;56(4):271–81. | eng |
dcterms.references | Ameny MA, Raila J, Walzel E, Schweigert FJ. Effect of iron and/or vitamin A re-supplementation on vitamin A and iron status of rats after a dietary deficiency of both components. J Trace Elem Med Biol. 2002;16(3):175–8 | eng |
dcterms.references | Buttarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Lab Hematol. 2016;38(Suppl 1):123–32. | eng |
dcterms.references | Dewamitta SR, Joseph C, Purton LE, Walkley CR. Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors. Br J Haematol. 2014;164(2):280–5. | eng |
dcterms.references | Honda H, Kobayashi Y, Onuma S, Shibagaki K, Yuza T, Hirao K, et al. Associations among erythroferrone and biomarkers of erythropoiesis and iron metabolism, and treatment with longterm erythropoiesis-stimulating agents in patients on hemodialysis. PLoS One. 2016;11(3):1–10. | eng |
dcterms.references | Hoofnagle AN. Harmonization of blood-based indicators of iron status: making the hard work matter. Am J Clin Nutr. 2017;106(Id):1615S-1619S | eng |
dcterms.references | Aulakh R, Sohi I, Singh T, Kakkar N. Red cell distribution width (RDW) in the diagnosis of iron deficiency with microcytic hypochromic anemia. Indian J Pediatr. 2009;76(3):265–8 | eng |
dcterms.references | Amine EK, Corey J, Hegsted DM, Hayes KC. Comparative Hematology during Deficiencies of Iron and Vitamin A in the Rat. J Nutr. 1970;100(9):1033–40. | eng |
dcterms.references | Okonko DO, Mandal AKJ, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58(12):1241–51. | eng |
dcterms.references | Berda-Haddad Y, Faure C, Boubaya M, Arpin M, Cointe S, Frankel D, et al. Increased mean corpuscular haemoglobin concentration: artefact or pathological condition? Int J Lab Hematol. 2017;39(1):32–41. | eng |
dcterms.references | Cossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28(6):2151–6. | eng |
dcterms.references | Moraal M, Leenaars PPAM, Arnts H, Smeets K, Savenije BS, Curfs JHAJ, et al. The influence of food restriction versus ad libitum feeding of chow and purified diets on variation in body weight, growth and physiology of female wistar rats. Lab Anim. 2012;46(2):101–7. | eng |
dcterms.references | Petranovic D, Batinac T, Petranovic D, Ruzic A, Ruzic T. Iron deficiency anaemia influences cognitive functions. Med Hypotheses. 2008;70(1):70–2. | eng |
dcterms.references | Barber T, Borrás E, Torres L, García C, Cabezuelo F, Lloret A, et al. Vitamin A deficiency causes oxidative damage to liver mitochondria in rats. Free Radic Biol Med. 2000;29(1):1–7. | eng |
dcterms.references | Arreguín A, Ribot J, Mušinović H, von Lintig J, Palou A, Bonet ML. Dietary vitamin A impacts DNA methylation patterns of adipogenesis-related genes in suckling rats. Arch Biochem Biophys. 2018;650:75–84. | eng |
dcterms.references | Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci. 2005;102(6):1906–10 | eng |
dcterms.references | Babitt JL, Lin HY. Molecular Mechanisms of Hepcidin Regulation: Implications for the Anemia of CKD. Am J Kidney Dis. 2010;55(4):726–41. | eng |
dcterms.references | Schmidt PJ, Fleming MD. Modulation of hepcidin as therapy for primary and secondary iron overload disorders: Preclinical models and approaches. Hematol Oncol Clin North Am. 2014;28(2):387–401. | eng |
dcterms.references | Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147–53. | eng |
dcterms.references | Namaste SML, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106:359S-71S | eng |
dcterms.references | Restrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr [Internet]. 2020;0(0):1–14. Available from: https://doi.org/10.1080/10408398.2020.1787326 | eng |
dcterms.references | Chiou YL, Chen YH, Ke T, Ko WS. The effect of increased oxidative stress and ferritin in reducing the effectiveness of therapy in chronic hepatitis C patients. Clin Biochem. 2012;45(16–17):1389– 93. | eng |
dcterms.references | Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748–73. | eng |
dcterms.references | Vanoaica L, Darshan D, Richman L, Schümann K, Kühn LC. Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab. 2010;12(3):273–82. | eng |
dcterms.references | Han L, Liu Y, Lu M, Wang H, Tang F. Retinoic acid modulates iron metabolism imbalance in anemia of inflammation induced by LPS via reversely regulating hepcidin and ferroportin expression. Biochem Biophys Res Commun. 2018;507(1–4):280–5. | eng |
dcterms.references | Vuralli D, Tumer L, Hasanoglu A, Biberoglu G, Pasaoglu H. Vitamin A status and factors associated in healthy school-age children. Clin Nutr. 2014;33(3):509–12 | eng |
dcterms.references | Feng YL, Xie M, Tang J, Huang W, Zhang Q, Hou SS. Effects of vitamin A on growth performance and tissue retinol of starter White Pekin ducks. Poult Sci. 2019;98(5):2189–92 | eng |
dcterms.references | Koch JFA, Sabioni RE, Aguilar Aguilar FA, Lorenz EK, Cyrino JEP. Vitamin A requirements of dourado (Salminus brasiliensis): Growth performance and immunological parameters. Aquaculture [Internet]. 2018;491(September 2017):86–93. Available from: https://doi.org/10.1016/j.aquaculture.2018.03.017 | eng |
dcterms.references | Hurrell R, Ranum P, De Pee S, Biebinger R, Hulthen L, Johnson Q, et al. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of Current national wheat flour fortification programs. Food Nutr Bull. 2010;31(1 SUPPL.):7–21 | eng |
dcterms.references | Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology. 2013;139(1):1–10 | eng |
dcterms.references | Porto G, Oliveira S, Pinto JP. Hepcidina: a molécula-chave na regulação do metabolismo do ferro. J Port Gastrenterologia. 2012;18:26–32. | por |
dcterms.references | Rodrigues FL. Deficiência de vitamina A leva ao aumento de transcritos de hepcidina no fígado e acumulo de ferro no baço de ratos machos recém-desmamados. Universidade de Brasília; 2012. | por |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |