Mostrar el registro sencillo del ítem

dc.contributor.advisorDíaz Barrera, Luis Eduardo
dc.contributor.authorRestrepo Gallego, Mauricio
dc.date.accessioned12/17/2020 14:39
dc.date.available12/17/2020 14:39
dc.date.issued2020-10-26
dc.identifier.urihttp://hdl.handle.net/10818/46055
dc.description122 páginases_CO
dc.description.abstractIron deficiency anemia (IDA) and vitamin A deficiency (VAD) belong to the micronutrient deficiencies defined by the WHO as worldwide concern. In Colombia, IDA prevalence for children from 1 to 4 years old is 14.8% and anemia is 24.7% for children from 6 to 59 months old, it is remarkable in a country where is mandatory to fortify wheat flour with iron since 1996. On the other hand, VAD prevalence for children from 1 to 4 years old is 27.3% and, in this case, there is no mandatory fortification programs in the country. Interactions between micronutrients are not unknown on health and nutrition field, the most recognized is that between calcium and vitamin D; besides, there is evidence from an epidemiological perspective that VAD and ID are linked in some way, fact supported for some studies using cellular and animal models. This study has the hypothesis that vitamin A regulates in some way the iron homeostasis and its metabolic role, and has three approaches: weight gain, biochemical and hematological parameters and molecular markers of iron homeostasis. We designed a study with four experimental diets with different ratios of iron and vitamin A (sufficient, insufficient and deficient) and a control diet with a sufficient supply of both micronutrients. The quantity of animals was calculated statistically giving seven animals per group for 35 animals. The rats started the experiment at weaning (21 days-old) and received food and water at libitum for six weeks, during this time food intake and weight were recorded each week. At sixth week the animals were euthanized and samples from blood and tissues of interest (liver, spleen and duodenum) were taken for analysis of biochemical and hematological indicators in blood and PCR and Western Blot test in tissues for the analysis of hepcidin, ferritin, transferrin receptors, transferrin and interleukin-6 as proteins of interest.en
dc.description.abstractLa anemia por deficiencia de hierro (IDA) y la deficiencia de vitamina A (VAD) hacen parte del grupo de las deficiencias por micronutrientes definidas por la OMS como de interés mundial. En el caso de Colombia, la prevalencia de IDA en niños de 1 a 4 años es de 14.8% y la anemia está en 24.7% para niños entre 6 y 59 meses, algo paradójico si se tiene en cuenta que desde 1996 es obligatorio fortificar la harina de trigo con hierro. De otro lado, la prevalencia de VAD es de 27.3% para el mismo grupo poblacional, en este caso hasta el día de hoy no existe ningún tipo de fortificación obligatoria en el país. Las interacciones entre nutrientes no son algo desconocido en el campo de la salud y la nutrición, la más reconocida es la existente entre calcio y vitamina D; además, existe evidencia desde el punto de vista epidemiológico de que la VAD y la ID tienen algún tipo de relación, hecho que ha sido soportado por algunos estudios en modelos celulares y animales. Este estudio parte de la hipótesis de que la vitamina A regula de alguna forma la homeostasis del hierro y su rol metabólico, y aborda tres enfoques: ganancia de peso, parámetros bioquímicos y hematológicos y biomarcadores de la homeostasis del hierro.es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectVitamina Aes_CO
dc.subjectAnemiaes_CO
dc.subjectHomeostasises_CO
dc.titleDeterminación del efecto de la deficiencia de vitamina A sobre la homeostasis del hierro y su estado en modelo murinoes_CO
dc.typedoctoral thesises_CO
dc.identifier.local279977
dc.identifier.localTE11055
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.subject.armarcVitamina Aes_CO
dc.subject.armarcAnemiaes_CO
dc.subject.armarcHomeostasises_CO
dcterms.referencesGanz T. Iron homeostasis: fitting the puzzle pieces together. Cell Metab. 2008;7(4):288–90en
dcterms.referencesWaldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, et al. Physiology of iron metabolism. Transfus Med Hemotherapy. 2014;41(3):213–21en
dcterms.referencesInstitute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington DC: The National Academies Press; 2001. p. 290–393en
dcterms.referencesMesías M, Seiquer I, Navarro MP. Iron nutrition in adolescence. Crit Rev Food Sci Nutr. 2013;53(11):1226–37.en
dcterms.referencesKe C, Lan Z, Hua L, Ying Z, Humina X, Jia S, et al. Iron metabolism in infants: Influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31(2):304–9.en
dcterms.referencesGrotto HZW. Fisiologia e metabolismo do ferro. Rev Bras Hematol Hemoter. 2010;32:08–17.en
dcterms.referencesSaito H. Metabolism of iron stores. Nagoya J Med Sci. 2014;76(3–4):235–54.en
dcterms.referencesMuñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15(37):4617–26.en
dcterms.referencesCediel G, Olivares M, Gaitán D, Flores S, Brito A, Pizarro F. Effect of trypsin and mucin on heme iron bioavailability in humans. Biol Trace Elem Res. 2012;150(1–3):37–41.en
dcterms.referencesFuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26:115– 9.en
dcterms.referencesBrasselagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011;140(4):1261–71en
dcterms.referencesShayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell. 2005;122(5):789–801en
dcterms.referencesLeong W-I, Lönnerdal B. Iron nutrition. In: Iron Physiology and Pathophysiology in Humans. New York: Humana Press; 2012. p. 81–99.en
dcterms.referencesSilva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2015;1852(7):1347–59. Available from: http://dx.doi.org/10.1016/j.bbadis.2015.03.011en
dcterms.referencesAndrews NC. The iron transporter DMT1. Int J Biochem Cell Biol. 1999;31(10):991–4.en
dcterms.referencesGarrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, et al. DMT1: A mammalian transporter for multiple metals. BioMetals. 2003;16(1):41–54.en
dcterms.referencesIlling AC, Shawki A, Cunningham CL, Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem. 2012;287(36):30485–96.en
dcterms.referencesRíos-Castillo I, Olivares M, Brito A, de Romaña DL, Pizarro F. One-month of calcium supplementation does not affect iron bioavailability: a randomized controlled trial. Nutrition. 2014;30(1):44–8en
dcterms.referencesVázquez M, Vélez D, Devesa V, Puig S. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology. 2015;331:119–24en
dcterms.referencesLatunde-Dada GO, Van der Westhuizen J, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells, Mol Dis. 2002;29(3):356–60en
dcterms.referencesOakhill JS, Marritt SJ, Gareta EG, Cammack R, McKie AT. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta - Bioenerg. 2008;1777(3):260–8.en
dcterms.referencesLuo X, Hill M, Johnson A, Latunde-Dada GO. Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells. Biochim Biophys Acta - Gen Subj. 2014;1840(1):106–12.en
dcterms.referencesLane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta - Mol Cell Res [Internet]. 2015;1853(5):1130–44. Available from: http://dx.doi.org/10.1016/j.bbamcr.2015.01.021en
dcterms.referencesWhite KN, Conesa C, Sánchez L, Amini M, Farnaud S, Lorvoralak C, et al. The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta - Gen Subj. 2012;1820(3):411–6.en
dcterms.referencesXu E, Chen M, Zheng J, Maimaitiming Z, Zhong T, Chen H. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Biochem Biophys Res Commun. 2018;503(3):1905–10.en
dcterms.referencesChen M, Zheng J, Liu G, Xu E, Wang J, Fuqua BK, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17(May):432–9.en
dcterms.referencesMendiburo MJ, Le Blanc S, Espinoza A, Pizarro F, Arredondo M. Transepithelial heme-iron transport: Effect of heme oxygenase overexpression. Eur J Nutr. 2011;50(5):363–71.en
dcterms.referencesKrishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58.en
dcterms.referencesGe XH, Wang Q, Qian ZM, Zhu L, Du F, Yung WH, et al. The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. J Nutr Biochem. 2009;20(11):860–5en
dcterms.referencesViatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie. 2009;91:1223–8en
dcterms.referencesSingh B, Arora S, Agrawal P, Gupta SK. Hepcidin: A novel peptide hormone regulating iron metabolism. Clin Chim Acta. 2011;412:823–30.en
dcterms.referencesVyoral D. Hepcidin : A direct link between iron metabolism and immunity. 2005;37:1768–73.en
dcterms.referencesKwapisz J, Slomka A, Zekanowska E. Hepcidin and its role in iron homeostasis. J Int Fed Clin Chem Lab Med. 2009;20(2):124–8.en
dcterms.referencesTussing-Humphreys L, Pustacioglu C, Nemeth E, Braunschweig C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J Acad Nutr Diet. 2012;112(3):391–400.en
dcterms.referencesPrzybyszewska J, Żekanowska E. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Gastroenterol Rev. 2014;4(4):208–13.en
dcterms.referencesGanz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10en
dcterms.referencesda Cunha MSB, Siqueira EMA, Trindade LA, Arruda SF. Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis. J Nutr Biochem. 2014;25(10):1035–44.en
dcterms.referencesRaha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SRW, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci [Internet]. 2015;16(1):1–12. Available from: ???en
dcterms.referencesCamaschella C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017;31(4):225–33.en
dcterms.referencesWilkinson N, Pantopoulos K. The IRP/IRE system in vivo: Insights from mouse models. Front Pharmacol. 2014;5 JUL(July):1–15.en
dcterms.referencesBhutta ZA, Salam RA, Das JK. Meeting the challenges of micronutrient malnutrition in the developing world. Br Med Bull. 2013;106(1):7–17en
dcterms.referencesLynch SR. Interaction of iron with other nutrients. Nutr Rev. 1997;55(4):102–10.en
dcterms.referencesLynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of nutrition for development (BOND)-iron review. J Nutr. 2018;148:1001S-1067S.en
dcterms.referencesWHO/ FAO. Vitamin and mineral requirements in human nutrition. 2004;139.en
dcterms.referencesBall GFM. Vitamin A: retinoids and the provitamin A carotenoids. In: Vitamins in Food Analysis, Bioavailability, and Stability. CRC Press - Taylor & Francis; 2006. p. 39–92.en
dcterms.referencesChen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med. 2014;3(2):453–79.en
dcterms.referencesReboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients. 2013;5(9):3563–81en
dcterms.referencesWHO. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015.en
dcterms.referencesLozoff B, Georgieff MK. Iron Deficiency and Brain Development. Semin Pediatr Neurol. 2006;13(3):158–65.en
dcterms.referencesStoltzfus RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr. 2001;131(2S-2):697S-700S; discussion 700S-701S.en
dcterms.referencesWHO. Iron deficiency anaemia: assessment, prevention, and control. 2001.en
dcterms.referencesWHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. 2011.en
dcterms.referencesWHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switz World Heal Organ. 2011;1–6.en
dcterms.referencesGrantham-Mcgregor S, Baker-Henningham H. Iron deficiency in childhood: Causes and consequences for child development. Ann Nestle. 2010;68(3):105–19.en
dcterms.referencesWHO. Worldwide prevalence of anaemia. [Internet]. 2008 [cited 2018 Mar 28]. Available from: whqlibdoc.who.int/publications/2008/9789241596657_eng.pdfen
dcterms.referencesSandström B. Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr. 2001;85 Suppl 2:S181–5.en
dcterms.referencesCamaschella C. Iron deficiency. Blood. 2019;133(1):30–9.en
dcterms.referencesLopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387:907–16en
dcterms.referencesJiang S, Wang C, Lan L, Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012;28(3):281–7.en
dcterms.referencesKoessler KK, Maurer S, Loughlin R. The relation of anemia, primary and secondary, to vitamin A deficiency. JAMA. 1926;87(7):476–82.en
dcterms.referencesHodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, et al. Hematopoietic studies in Vitamin A deficiency. Am J Clin Nutr. 1978;(May):876–85.en
dcterms.referencesRoodenburg AJC, Van Pelt AMM, West CE, Beynen AC. Effect of vitamin A supplementation for 3 days on iron metabolism, liver function indicator enzymes and differential cell counts in bone marrow of rats with severe vitamin A deficiency. Nutr Res. 1996;16(11–12):1933–41.en
dcterms.referencesRoodenburg AJC, West CE, Beynen AC. Vitamin A status affects the efficacy of iron repletion in rats with mild iron deficiency. J Nutr Biochem. 1996;7(2):99–105.en
dcterms.referencesRoodenburg AJC, West CE, Beguin Y, Van Dijk JE, Van Eijk HG, Marx JJM, et al. Indicators of erythrocyte formation and degradation in rats with either vitamin A or iron deficiency. J Nutr Biochem. 2000;11(4):223–30.en
dcterms.referencesPalafox NA, Gamble M V., Dancheck B, Ricks MO, Briand K, Semba RD. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition. 2003;19(5):405–8.en
dcterms.referencesHamdy a M, Abdel Aleem MM, El-Shazly a a. Maternal vitamin A deficiency during pregnancy and its relation with maternal and neonatal hemoglobin concentrations among poor Egyptian families. ISRN Pediatr. 2013;2013:652148en
dcterms.referencesChen K, Zhang X, Li T yu, Chen L, Wei X ping, Qu P, et al. Effect of vitamin A, vitamin A plus iron and multiple micronutrient-fortified seasoning powder on infectious morbidity of preschool children. Nutrition. 2011;27(4):428–34en
dcterms.referencesafari SM, Heidari G, Nabipour I, Amirinejad R, Assadi M, Bargahi A, et al. Serum retinol levels are positively correlated with hemoglobin concentrations, independent of iron homeostasis: A population-based study. Nutr Res. 2013;33(4):279–85.en
dcterms.referencesArguello MA, Schulze KJ, Wu LSF, Dreyfuss ML, Khatry SK, Christian P, et al. Circulating IGF-1 may mediate improvements in haemoglobin associated with vitamin A status during pregnancy in rural Nepalese women. Asia Pac J Clin Nutr. 2015;24(1):128–37en
dcterms.referencesVillamor E, Marín C, Mora-Plazas M, Oliveros H. Micronutrient status in middle childhood and age at menarche: Results from the Bogotá School Children Cohort. Br J Nutr. 2017;118(12):1097–105.en
dcterms.referencesArruda SF, Siqueira EM de A, de Valência FF. Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition. 2009;25(4):472–8.en
dcterms.referencesCitelli M, Bittencourt LL, Da Silva SV, Pierucci APT, Pedrosa C. Vitamin a modulates the expression of genes involved in iron bioavailability. Biol Trace Elem Res. 2012;149(1):64–70.en
dcterms.referencesGarcía Y, Díaz-Castro J. Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review. Animal. 2013;7(10):1651–8.en
dcterms.referencesCao C, Thomas CE, Insogna KL, Brien KOO. Duodenal absorption and tissue utilization of dietary heme and non-heme iron differ in rats. J Nutr. 2014;144(C):1710–7.en
dcterms.referencesCharan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303en
dcterms.referencesMullier F, Lainey E, Fenneteau O, da Costa L, Schillinger F, Bailly N, et al. Additional erythrocytic and reticulocytic parameters helpful for diagnosis of hereditary spherocytosis: Results of a multicentre study. Ann Hematol. 2011;90:759–68.en
dcterms.referencesThermo Scientific. NanoDrop Nucleic Acid Technical Guide. 2010;Revised 11:1–30. Available from: https://tools.thermofisher.com/content/sfs/brochures/Thermo-Scientific-NanoDrop-ProductsNucleic-Acid-Technical-Guide-EN.pdfen
dcterms.referencesKong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen W Bin, et al. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res. 2014;160(2):258–67.en
dcterms.referencesMalik IA, Wilting J, Ramadori G, Naz N. Reabsorption of iron into acutely damaged rat liver: A role for ferritins. World J Gastroenterol. 2017;23(41):7347–58.en
dcterms.referencesSheikh N, Batusic DS, Dudas J, Tron K, Neubauer K, Saile B, et al. Hepcidin and hemojuvelin gene expression in rat liver damage: in vivo and in vitro studies. Am J Physiol Liver Physiol. 2006;291(3):G482–90.en
dcterms.referencesJacob Filho W, Lima CC, Paunksnis MRR, Silva AA, Perilhão MS, Caldeira M, et al. Reference database of hematological parameters for growing and aging rats. Aging Male. 2018;21(2):145–8.en
dcterms.referencesNational Research Council. Nutrient requirements of laboratory animals,. Nutrient Requirements of Laboratory Animals,. 2015.en
dcterms.referencesSaraiva BC, Soares MC, dos Santos LC, Pereira SCL, Horta PM. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years. J Pediatr (Rio J). 2014;90(6):593–9.en
dcterms.referencesSales MC, de Azevedo Paiva A, de Queiroz D, França Costa RA, Lins da Cunha MA, Pedraza DF. Nutritional status of iron in children from 6 to 59 months of age and its relation to vitamin A deficiency. Nutr Hosp. 2013;28(3):734–40.en
dcterms.referencesSemba RD, Bloem MW. The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr. 2002;56(4):271–81.en
dcterms.referencesAmeny MA, Raila J, Walzel E, Schweigert FJ. Effect of iron and/or vitamin A re-supplementation on vitamin A and iron status of rats after a dietary deficiency of both components. J Trace Elem Med Biol. 2002;16(3):175–8en
dcterms.referencesButtarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Lab Hematol. 2016;38(Suppl 1):123–32.en
dcterms.referencesDewamitta SR, Joseph C, Purton LE, Walkley CR. Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors. Br J Haematol. 2014;164(2):280–5.en
dcterms.referencesHonda H, Kobayashi Y, Onuma S, Shibagaki K, Yuza T, Hirao K, et al. Associations among erythroferrone and biomarkers of erythropoiesis and iron metabolism, and treatment with longterm erythropoiesis-stimulating agents in patients on hemodialysis. PLoS One. 2016;11(3):1–10.en
dcterms.referencesHoofnagle AN. Harmonization of blood-based indicators of iron status: making the hard work matter. Am J Clin Nutr. 2017;106(Id):1615S-1619Sen
dcterms.referencesAulakh R, Sohi I, Singh T, Kakkar N. Red cell distribution width (RDW) in the diagnosis of iron deficiency with microcytic hypochromic anemia. Indian J Pediatr. 2009;76(3):265–8en
dcterms.referencesAmine EK, Corey J, Hegsted DM, Hayes KC. Comparative Hematology during Deficiencies of Iron and Vitamin A in the Rat. J Nutr. 1970;100(9):1033–40.en
dcterms.referencesOkonko DO, Mandal AKJ, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58(12):1241–51.en
dcterms.referencesBerda-Haddad Y, Faure C, Boubaya M, Arpin M, Cointe S, Frankel D, et al. Increased mean corpuscular haemoglobin concentration: artefact or pathological condition? Int J Lab Hematol. 2017;39(1):32–41.en
dcterms.referencesCossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28(6):2151–6.en
dcterms.referencesMoraal M, Leenaars PPAM, Arnts H, Smeets K, Savenije BS, Curfs JHAJ, et al. The influence of food restriction versus ad libitum feeding of chow and purified diets on variation in body weight, growth and physiology of female wistar rats. Lab Anim. 2012;46(2):101–7.en
dcterms.referencesPetranovic D, Batinac T, Petranovic D, Ruzic A, Ruzic T. Iron deficiency anaemia influences cognitive functions. Med Hypotheses. 2008;70(1):70–2.en
dcterms.referencesBarber T, Borrás E, Torres L, García C, Cabezuelo F, Lloret A, et al. Vitamin A deficiency causes oxidative damage to liver mitochondria in rats. Free Radic Biol Med. 2000;29(1):1–7.en
dcterms.referencesArreguín A, Ribot J, Mušinović H, von Lintig J, Palou A, Bonet ML. Dietary vitamin A impacts DNA methylation patterns of adipogenesis-related genes in suckling rats. Arch Biochem Biophys. 2018;650:75–84.en
dcterms.referencesLee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci. 2005;102(6):1906–10en
dcterms.referencesBabitt JL, Lin HY. Molecular Mechanisms of Hepcidin Regulation: Implications for the Anemia of CKD. Am J Kidney Dis. 2010;55(4):726–41.en
dcterms.referencesSchmidt PJ, Fleming MD. Modulation of hepcidin as therapy for primary and secondary iron overload disorders: Preclinical models and approaches. Hematol Oncol Clin North Am. 2014;28(2):387–401.en
dcterms.referencesBabicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147–53.en
dcterms.referencesNamaste SML, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106:359S-71Sen
dcterms.referencesRestrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr [Internet]. 2020;0(0):1–14. Available from: https://doi.org/10.1080/10408398.2020.1787326en
dcterms.referencesChiou YL, Chen YH, Ke T, Ko WS. The effect of increased oxidative stress and ferritin in reducing the effectiveness of therapy in chronic hepatitis C patients. Clin Biochem. 2012;45(16–17):1389– 93.en
dcterms.referencesKell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748–73.en
dcterms.referencesVanoaica L, Darshan D, Richman L, Schümann K, Kühn LC. Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab. 2010;12(3):273–82.en
dcterms.referencesHan L, Liu Y, Lu M, Wang H, Tang F. Retinoic acid modulates iron metabolism imbalance in anemia of inflammation induced by LPS via reversely regulating hepcidin and ferroportin expression. Biochem Biophys Res Commun. 2018;507(1–4):280–5.en
dcterms.referencesVuralli D, Tumer L, Hasanoglu A, Biberoglu G, Pasaoglu H. Vitamin A status and factors associated in healthy school-age children. Clin Nutr. 2014;33(3):509–12en
dcterms.referencesFeng YL, Xie M, Tang J, Huang W, Zhang Q, Hou SS. Effects of vitamin A on growth performance and tissue retinol of starter White Pekin ducks. Poult Sci. 2019;98(5):2189–92en
dcterms.referencesKoch JFA, Sabioni RE, Aguilar Aguilar FA, Lorenz EK, Cyrino JEP. Vitamin A requirements of dourado (Salminus brasiliensis): Growth performance and immunological parameters. Aquaculture [Internet]. 2018;491(September 2017):86–93. Available from: https://doi.org/10.1016/j.aquaculture.2018.03.017en
dcterms.referencesHurrell R, Ranum P, De Pee S, Biebinger R, Hulthen L, Johnson Q, et al. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of Current national wheat flour fortification programs. Food Nutr Bull. 2010;31(1 SUPPL.):7–21en
dcterms.referencesMalhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology. 2013;139(1):1–10en
dcterms.referencesGanz T. Iron homeostasis: fitting the puzzle pieces together. Cell Metab. 2008;7(4):288–90eng
dcterms.referencesWaldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, et al. Physiology of iron metabolism. Transfus Med Hemotherapy. 2014;41(3):213–21eng
dcterms.referencesInstitute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. In: Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington DC: The National Academies Press; 2001. p. 290–393eng
dcterms.referencesMesías M, Seiquer I, Navarro MP. Iron nutrition in adolescence. Crit Rev Food Sci Nutr. 2013;53(11):1226–37.eng
dcterms.referencesKe C, Lan Z, Hua L, Ying Z, Humina X, Jia S, et al. Iron metabolism in infants: Influence of bovine lactoferrin from iron-fortified formula. Nutrition. 2015;31(2):304–9.eng
dcterms.referencesGrotto HZW. Fisiologia e metabolismo do ferro. Rev Bras Hematol Hemoter. 2010;32:08–17.eng
dcterms.referencesSaito H. Metabolism of iron stores. Nagoya J Med Sci. 2014;76(3–4):235–54.eng
dcterms.referencesMuñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15(37):4617–26.eng
dcterms.referencesCediel G, Olivares M, Gaitán D, Flores S, Brito A, Pizarro F. Effect of trypsin and mucin on heme iron bioavailability in humans. Biol Trace Elem Res. 2012;150(1–3):37–41.eng
dcterms.referencesFuqua BK, Vulpe CD, Anderson GJ. Intestinal iron absorption. J Trace Elem Med Biol. 2012;26:115– 9.eng
dcterms.referencesBrasselagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology. 2011;140(4):1261–71eng
dcterms.referencesShayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell. 2005;122(5):789–801eng
dcterms.referencesLeong W-I, Lönnerdal B. Iron nutrition. In: Iron Physiology and Pathophysiology in Humans. New York: Humana Press; 2012. p. 81–99.eng
dcterms.referencesSilva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta - Mol Basis Dis [Internet]. 2015;1852(7):1347–59. Available from: http://dx.doi.org/10.1016/j.bbadis.2015.03.011eng
dcterms.referencesAndrews NC. The iron transporter DMT1. Int J Biochem Cell Biol. 1999;31(10):991–4.eng
dcterms.referencesGarrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, et al. DMT1: A mammalian transporter for multiple metals. BioMetals. 2003;16(1):41–54.eng
dcterms.referencesIlling AC, Shawki A, Cunningham CL, Mackenzie B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem. 2012;287(36):30485–96.eng
dcterms.referencesRíos-Castillo I, Olivares M, Brito A, de Romaña DL, Pizarro F. One-month of calcium supplementation does not affect iron bioavailability: a randomized controlled trial. Nutrition. 2014;30(1):44–8eng
dcterms.referencesVázquez M, Vélez D, Devesa V, Puig S. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Toxicology. 2015;331:119–24eng
dcterms.referencesLatunde-Dada GO, Van der Westhuizen J, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells, Mol Dis. 2002;29(3):356–60eng
dcterms.referencesOakhill JS, Marritt SJ, Gareta EG, Cammack R, McKie AT. Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta - Bioenerg. 2008;1777(3):260–8.eng
dcterms.referencesLuo X, Hill M, Johnson A, Latunde-Dada GO. Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells. Biochim Biophys Acta - Gen Subj. 2014;1840(1):106–12.eng
dcterms.referencesLane DJR, Merlot AM, Huang MLH, Bae DH, Jansson PJ, Sahni S, et al. Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease. Biochim Biophys Acta - Mol Cell Res [Internet]. 2015;1853(5):1130–44. Available from: http://dx.doi.org/10.1016/j.bbamcr.2015.01.021eng
dcterms.referencesWhite KN, Conesa C, Sánchez L, Amini M, Farnaud S, Lorvoralak C, et al. The transfer of iron between ceruloplasmin and transferrins. Biochim Biophys Acta - Gen Subj. 2012;1820(3):411–6.eng
dcterms.referencesXu E, Chen M, Zheng J, Maimaitiming Z, Zhong T, Chen H. Deletion of hephaestin and ceruloplasmin induces a serious systemic iron deficiency and disrupts iron homeostasis. Biochem Biophys Res Commun. 2018;503(3):1905–10.eng
dcterms.referencesChen M, Zheng J, Liu G, Xu E, Wang J, Fuqua BK, et al. Ceruloplasmin and hephaestin jointly protect the exocrine pancreas against oxidative damage by facilitating iron efflux. Redox Biol. 2018;17(May):432–9.eng
dcterms.referencesMendiburo MJ, Le Blanc S, Espinoza A, Pizarro F, Arredondo M. Transepithelial heme-iron transport: Effect of heme oxygenase overexpression. Eur J Nutr. 2011;50(5):363–71.eng
dcterms.referencesKrishnamurthy P, Xie T, Schuetz JD. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther. 2007;114(3):345–58.eng
dcterms.referencesGe XH, Wang Q, Qian ZM, Zhu L, Du F, Yung WH, et al. The iron regulatory hormone hepcidin reduces ferroportin 1 content and iron release in H9C2 cardiomyocytes. J Nutr Biochem. 2009;20(11):860–5eng
dcterms.referencesViatte L, Vaulont S. Hepcidin, the iron watcher. Biochimie. 2009;91:1223–8eng
dcterms.referencesSingh B, Arora S, Agrawal P, Gupta SK. Hepcidin: A novel peptide hormone regulating iron metabolism. Clin Chim Acta. 2011;412:823–30.eng
dcterms.referencesVyoral D. Hepcidin : A direct link between iron metabolism and immunity. 2005;37:1768–73.eng
dcterms.referencesKwapisz J, Slomka A, Zekanowska E. Hepcidin and its role in iron homeostasis. J Int Fed Clin Chem Lab Med. 2009;20(2):124–8.eng
dcterms.referencesTussing-Humphreys L, Pustacioglu C, Nemeth E, Braunschweig C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: introducing hepcidin. J Acad Nutr Diet. 2012;112(3):391–400.eng
dcterms.referencesPrzybyszewska J, Żekanowska E. The role of hepcidin, ferroportin, HCP1, and DMT1 protein in iron absorption in the human digestive tract. Gastroenterol Rev. 2014;4(4):208–13.eng
dcterms.referencesGanz T, Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15(8):500–10eng
dcterms.referencesda Cunha MSB, Siqueira EMA, Trindade LA, Arruda SF. Vitamin A deficiency modulates iron metabolism via ineffective erythropoiesis. J Nutr Biochem. 2014;25(10):1035–44.eng
dcterms.referencesRaha-Chowdhury R, Raha AA, Forostyak S, Zhao JW, Stott SRW, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci [Internet]. 2015;16(1):1–12. Available from: ???eng
dcterms.referencesCamaschella C. New insights into iron deficiency and iron deficiency anemia. Blood Rev. 2017;31(4):225–33.eng
dcterms.referencesWilkinson N, Pantopoulos K. The IRP/IRE system in vivo: Insights from mouse models. Front Pharmacol. 2014;5 JUL(July):1–15.eng
dcterms.referencesBhutta ZA, Salam RA, Das JK. Meeting the challenges of micronutrient malnutrition in the developing world. Br Med Bull. 2013;106(1):7–17eng
dcterms.referencesLynch SR. Interaction of iron with other nutrients. Nutr Rev. 1997;55(4):102–10.eng
dcterms.referencesLynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, et al. Biomarkers of nutrition for development (BOND)-iron review. J Nutr. 2018;148:1001S-1067S.eng
dcterms.referencesWHO/ FAO. Vitamin and mineral requirements in human nutrition. 2004;139.eng
dcterms.referencesBall GFM. Vitamin A: retinoids and the provitamin A carotenoids. In: Vitamins in Food Analysis, Bioavailability, and Stability. CRC Press - Taylor & Francis; 2006. p. 39–92.eng
dcterms.referencesChen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med. 2014;3(2):453–79.eng
dcterms.referencesReboul E. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients. 2013;5(9):3563–81eng
dcterms.referencesWHO. The global prevalence of anaemia in 2011. Geneva: World Health Organization; 2015.eng
dcterms.referencesLozoff B, Georgieff MK. Iron Deficiency and Brain Development. Semin Pediatr Neurol. 2006;13(3):158–65.eng
dcterms.referencesStoltzfus RJ. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr. 2001;131(2S-2):697S-700S; discussion 700S-701S.eng
dcterms.referencesWHO. Iron deficiency anaemia: assessment, prevention, and control. 2001.eng
dcterms.referencesWHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. 2011.eng
dcterms.referencesWHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switz World Heal Organ. 2011;1–6.eng
dcterms.referencesGrantham-Mcgregor S, Baker-Henningham H. Iron deficiency in childhood: Causes and consequences for child development. Ann Nestle. 2010;68(3):105–19.eng
dcterms.referencesWHO. Worldwide prevalence of anaemia. [Internet]. 2008 [cited 2018 Mar 28]. Available from: whqlibdoc.who.int/publications/2008/9789241596657_eng.pdfeng
dcterms.referencesSandström B. Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr. 2001;85 Suppl 2:S181–5.eng
dcterms.referencesCamaschella C. Iron deficiency. Blood. 2019;133(1):30–9.eng
dcterms.referencesLopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387:907–16eng
dcterms.referencesJiang S, Wang C, Lan L, Zhao D. Vitamin A deficiency aggravates iron deficiency by upregulating the expression of iron regulatory protein-2. Nutrition. 2012;28(3):281–7.eng
dcterms.referencesKoessler KK, Maurer S, Loughlin R. The relation of anemia, primary and secondary, to vitamin A deficiency. JAMA. 1926;87(7):476–82.eng
dcterms.referencesHodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, et al. Hematopoietic studies in Vitamin A deficiency. Am J Clin Nutr. 1978;(May):876–85.eng
dcterms.referencesRoodenburg AJC, Van Pelt AMM, West CE, Beynen AC. Effect of vitamin A supplementation for 3 days on iron metabolism, liver function indicator enzymes and differential cell counts in bone marrow of rats with severe vitamin A deficiency. Nutr Res. 1996;16(11–12):1933–41.eng
dcterms.referencesRoodenburg AJC, West CE, Beynen AC. Vitamin A status affects the efficacy of iron repletion in rats with mild iron deficiency. J Nutr Biochem. 1996;7(2):99–105.eng
dcterms.referencesRoodenburg AJC, West CE, Beguin Y, Van Dijk JE, Van Eijk HG, Marx JJM, et al. Indicators of erythrocyte formation and degradation in rats with either vitamin A or iron deficiency. J Nutr Biochem. 2000;11(4):223–30.eng
dcterms.referencesPalafox NA, Gamble M V., Dancheck B, Ricks MO, Briand K, Semba RD. Vitamin A deficiency, iron deficiency, and anemia among preschool children in the Republic of the Marshall Islands. Nutrition. 2003;19(5):405–8.eng
dcterms.referencesHamdy a M, Abdel Aleem MM, El-Shazly a a. Maternal vitamin A deficiency during pregnancy and its relation with maternal and neonatal hemoglobin concentrations among poor Egyptian families. ISRN Pediatr. 2013;2013:652148eng
dcterms.referencesChen K, Zhang X, Li T yu, Chen L, Wei X ping, Qu P, et al. Effect of vitamin A, vitamin A plus iron and multiple micronutrient-fortified seasoning powder on infectious morbidity of preschool children. Nutrition. 2011;27(4):428–34eng
dcterms.referencesafari SM, Heidari G, Nabipour I, Amirinejad R, Assadi M, Bargahi A, et al. Serum retinol levels are positively correlated with hemoglobin concentrations, independent of iron homeostasis: A population-based study. Nutr Res. 2013;33(4):279–85.eng
dcterms.referencesArguello MA, Schulze KJ, Wu LSF, Dreyfuss ML, Khatry SK, Christian P, et al. Circulating IGF-1 may mediate improvements in haemoglobin associated with vitamin A status during pregnancy in rural Nepalese women. Asia Pac J Clin Nutr. 2015;24(1):128–37eng
dcterms.referencesVillamor E, Marín C, Mora-Plazas M, Oliveros H. Micronutrient status in middle childhood and age at menarche: Results from the Bogotá School Children Cohort. Br J Nutr. 2017;118(12):1097–105.eng
dcterms.referencesArruda SF, Siqueira EM de A, de Valência FF. Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition. 2009;25(4):472–8.eng
dcterms.referencesCitelli M, Bittencourt LL, Da Silva SV, Pierucci APT, Pedrosa C. Vitamin a modulates the expression of genes involved in iron bioavailability. Biol Trace Elem Res. 2012;149(1):64–70.eng
dcterms.referencesGarcía Y, Díaz-Castro J. Advantages and disadvantages of the animal models v. in vitro studies in iron metabolism: a review. Animal. 2013;7(10):1651–8.eng
dcterms.referencesCao C, Thomas CE, Insogna KL, Brien KOO. Duodenal absorption and tissue utilization of dietary heme and non-heme iron differ in rats. J Nutr. 2014;144(C):1710–7.eng
dcterms.referencesCharan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303eng
dcterms.referencesMullier F, Lainey E, Fenneteau O, da Costa L, Schillinger F, Bailly N, et al. Additional erythrocytic and reticulocytic parameters helpful for diagnosis of hereditary spherocytosis: Results of a multicentre study. Ann Hematol. 2011;90:759–68.eng
dcterms.referencesThermo Scientific. NanoDrop Nucleic Acid Technical Guide. 2010;Revised 11:1–30. Available from: https://tools.thermofisher.com/content/sfs/brochures/Thermo-Scientific-NanoDrop-ProductsNucleic-Acid-Technical-Guide-EN.pdfeng
dcterms.referencesKong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen W Bin, et al. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res. 2014;160(2):258–67.eng
dcterms.referencesMalik IA, Wilting J, Ramadori G, Naz N. Reabsorption of iron into acutely damaged rat liver: A role for ferritins. World J Gastroenterol. 2017;23(41):7347–58.eng
dcterms.referencesSheikh N, Batusic DS, Dudas J, Tron K, Neubauer K, Saile B, et al. Hepcidin and hemojuvelin gene expression in rat liver damage: in vivo and in vitro studies. Am J Physiol Liver Physiol. 2006;291(3):G482–90.eng
dcterms.referencesJacob Filho W, Lima CC, Paunksnis MRR, Silva AA, Perilhão MS, Caldeira M, et al. Reference database of hematological parameters for growing and aging rats. Aging Male. 2018;21(2):145–8.eng
dcterms.referencesNational Research Council. Nutrient requirements of laboratory animals,. Nutrient Requirements of Laboratory Animals,. 2015.eng
dcterms.referencesSaraiva BC, Soares MC, dos Santos LC, Pereira SCL, Horta PM. Iron deficiency and anemia are associated with low retinol levels in children aged 1 to 5 years. J Pediatr (Rio J). 2014;90(6):593–9.eng
dcterms.referencesSales MC, de Azevedo Paiva A, de Queiroz D, França Costa RA, Lins da Cunha MA, Pedraza DF. Nutritional status of iron in children from 6 to 59 months of age and its relation to vitamin A deficiency. Nutr Hosp. 2013;28(3):734–40.eng
dcterms.referencesSemba RD, Bloem MW. The anemia of vitamin A deficiency: epidemiology and pathogenesis. Eur J Clin Nutr. 2002;56(4):271–81.eng
dcterms.referencesAmeny MA, Raila J, Walzel E, Schweigert FJ. Effect of iron and/or vitamin A re-supplementation on vitamin A and iron status of rats after a dietary deficiency of both components. J Trace Elem Med Biol. 2002;16(3):175–8eng
dcterms.referencesButtarello M. Laboratory diagnosis of anemia: are the old and new red cell parameters useful in classification and treatment, how? Int J Lab Hematol. 2016;38(Suppl 1):123–32.eng
dcterms.referencesDewamitta SR, Joseph C, Purton LE, Walkley CR. Erythroid-extrinsic regulation of normal erythropoiesis by retinoic acid receptors. Br J Haematol. 2014;164(2):280–5.eng
dcterms.referencesHonda H, Kobayashi Y, Onuma S, Shibagaki K, Yuza T, Hirao K, et al. Associations among erythroferrone and biomarkers of erythropoiesis and iron metabolism, and treatment with longterm erythropoiesis-stimulating agents in patients on hemodialysis. PLoS One. 2016;11(3):1–10.eng
dcterms.referencesHoofnagle AN. Harmonization of blood-based indicators of iron status: making the hard work matter. Am J Clin Nutr. 2017;106(Id):1615S-1619Seng
dcterms.referencesAulakh R, Sohi I, Singh T, Kakkar N. Red cell distribution width (RDW) in the diagnosis of iron deficiency with microcytic hypochromic anemia. Indian J Pediatr. 2009;76(3):265–8eng
dcterms.referencesAmine EK, Corey J, Hegsted DM, Hayes KC. Comparative Hematology during Deficiencies of Iron and Vitamin A in the Rat. J Nutr. 1970;100(9):1033–40.eng
dcterms.referencesOkonko DO, Mandal AKJ, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58(12):1241–51.eng
dcterms.referencesBerda-Haddad Y, Faure C, Boubaya M, Arpin M, Cointe S, Frankel D, et al. Increased mean corpuscular haemoglobin concentration: artefact or pathological condition? Int J Lab Hematol. 2017;39(1):32–41.eng
dcterms.referencesCossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28(6):2151–6.eng
dcterms.referencesMoraal M, Leenaars PPAM, Arnts H, Smeets K, Savenije BS, Curfs JHAJ, et al. The influence of food restriction versus ad libitum feeding of chow and purified diets on variation in body weight, growth and physiology of female wistar rats. Lab Anim. 2012;46(2):101–7.eng
dcterms.referencesPetranovic D, Batinac T, Petranovic D, Ruzic A, Ruzic T. Iron deficiency anaemia influences cognitive functions. Med Hypotheses. 2008;70(1):70–2.eng
dcterms.referencesBarber T, Borrás E, Torres L, García C, Cabezuelo F, Lloret A, et al. Vitamin A deficiency causes oxidative damage to liver mitochondria in rats. Free Radic Biol Med. 2000;29(1):1–7.eng
dcterms.referencesArreguín A, Ribot J, Mušinović H, von Lintig J, Palou A, Bonet ML. Dietary vitamin A impacts DNA methylation patterns of adipogenesis-related genes in suckling rats. Arch Biochem Biophys. 2018;650:75–84.eng
dcterms.referencesLee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci. 2005;102(6):1906–10eng
dcterms.referencesBabitt JL, Lin HY. Molecular Mechanisms of Hepcidin Regulation: Implications for the Anemia of CKD. Am J Kidney Dis. 2010;55(4):726–41.eng
dcterms.referencesSchmidt PJ, Fleming MD. Modulation of hepcidin as therapy for primary and secondary iron overload disorders: Preclinical models and approaches. Hematol Oncol Clin North Am. 2014;28(2):387–401.eng
dcterms.referencesBabicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147–53.eng
dcterms.referencesNamaste SML, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106:359S-71Seng
dcterms.referencesRestrepo-Gallego M, Díaz LE, Rondó PHC. Classic and emergent indicators for the assessment of human iron status. Crit Rev Food Sci Nutr [Internet]. 2020;0(0):1–14. Available from: https://doi.org/10.1080/10408398.2020.1787326eng
dcterms.referencesChiou YL, Chen YH, Ke T, Ko WS. The effect of increased oxidative stress and ferritin in reducing the effectiveness of therapy in chronic hepatitis C patients. Clin Biochem. 2012;45(16–17):1389– 93.eng
dcterms.referencesKell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748–73.eng
dcterms.referencesVanoaica L, Darshan D, Richman L, Schümann K, Kühn LC. Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab. 2010;12(3):273–82.eng
dcterms.referencesHan L, Liu Y, Lu M, Wang H, Tang F. Retinoic acid modulates iron metabolism imbalance in anemia of inflammation induced by LPS via reversely regulating hepcidin and ferroportin expression. Biochem Biophys Res Commun. 2018;507(1–4):280–5.eng
dcterms.referencesVuralli D, Tumer L, Hasanoglu A, Biberoglu G, Pasaoglu H. Vitamin A status and factors associated in healthy school-age children. Clin Nutr. 2014;33(3):509–12eng
dcterms.referencesFeng YL, Xie M, Tang J, Huang W, Zhang Q, Hou SS. Effects of vitamin A on growth performance and tissue retinol of starter White Pekin ducks. Poult Sci. 2019;98(5):2189–92eng
dcterms.referencesKoch JFA, Sabioni RE, Aguilar Aguilar FA, Lorenz EK, Cyrino JEP. Vitamin A requirements of dourado (Salminus brasiliensis): Growth performance and immunological parameters. Aquaculture [Internet]. 2018;491(September 2017):86–93. Available from: https://doi.org/10.1016/j.aquaculture.2018.03.017eng
dcterms.referencesHurrell R, Ranum P, De Pee S, Biebinger R, Hulthen L, Johnson Q, et al. Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of Current national wheat flour fortification programs. Food Nutr Bull. 2010;31(1 SUPPL.):7–21eng
dcterms.referencesMalhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology. 2013;139(1):1–10eng
dcterms.referencesPorto G, Oliveira S, Pinto JP. Hepcidina: a molécula-chave na regulação do metabolismo do ferro. J Port Gastrenterologia. 2012;18:26–32.por
dcterms.referencesRodrigues FL. Deficiência de vitamina A leva ao aumento de transcritos de hepcidina no fígado e acumulo de ferro no baço de ratos machos recém-desmamados. Universidade de Brasília; 2012.por
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International