Mostrar el registro sencillo del ítem
Technical and environmental assessment of the power production from agroindustrial wastes
dc.contributor.advisor | Cobo Ángel, Martha Isabel | |
dc.contributor.author | Sánchez Ramírez, Néstor Eduardo | |
dc.date.accessioned | 2020-11-25T20:02:35Z | |
dc.date.available | 2020-11-25T20:02:35Z | |
dc.date.issued | 2020-10-14 | |
dc.identifier.uri | http://hdl.handle.net/10818/45195 | |
dc.description | 269 páginas | es_CO |
dc.description.abstract | Hydrogen (H2) has become an alternative to mitigate climate change issues since its use in FC to produce power might contribute to reduce pollutant emissions. H2 could be established in the Colombian market by using biomass with low revenue to tackle the environmental issues. Therefore, the aim of this study was to determine the technical and environmental feasibility of power production from sugarcane press-mud, a residual biomass from the non-centrifugal sugar industry, by ethanol steam reforming (ESR). Said process encompasses the following stages: i) pretreatment; ii) bioethanol production and purification; iii) syngas production and purification to yield H2; iv) power production in a FC; and v) heat production in a burner. The environmental performance was done by Life Cycle Assessment (LCA) which gives a holistic perspective of the environmental impact. Collecting the data to build the Life Cycle Inventory (LCI) is one of the toughest tasks within LCA. Hence, experimental data along with simulation, and literature review served as tools to build the LCI and perform the impact assessment. Technically speaking, results showed that temperature pretreatment and catalyst loading were key factor during production of H2 from sugarcane press-mud. Likewise, supplementation with (NH4)2SO4 during fermentation allowed to mitigate fusel alcohol and increased H2 yield by ESR. Furthermore, the use of a bioethanol robust purification technology such as rectification is necessary to reduce the material and energy demand. The overall energy consumption was 54 kWh kg-1 of H2 which makes H2 from sugarcane press-mud a competitive technology. Environmentally speaking, the overall carbon footprint was 2.12 kg CO2-eq per kWh of power which is lower than the use of fuel ethanol as feedstock in the biofuel processor (2.98 kg CO2-eq per kWh). | en |
dc.description.abstract | En los últimos años, el hidrógeno (H2) se ha convertido en una alternativa para mitigar los efectos del cambio climático debido a que su uso en celdas de combustibles (CC) contribuye a la reducción de contaminantes. El H2 podría posicionarse en el mercado colombiano si se emplea biomasa residual. Por lo tanto, el objetivo de este estudio fue determinar la viabilidad técnica y ambiental de la producción de potencia a partir de Cachaza, un residuo de la industria panelera, mediante el siguiente proceso: i) pretratamiento de Cachaza; ii) producción de bioetanol; iii) producción de gas de síntesis mediante reformado con vapor de etanol (RVE); iv) purificación del gas de síntesis; v) generación de potencia en una CC; y vi) quemador de gases para generación de calor. La evaluación ambiental se realizó mediante Análisis de Ciclo de Vida (ACV), el cual da una perspectiva holística de los impactos ambientales. Construir el inventario del ciclo de vida es una de las tareas más complejas. En consecuencia, el uso de datos experimentales, resultados de simulación de procesos y bases de datos fueron empleados para elaborar el inventario del proceso descrito anteriormente. Desde un punto de vista técnico, las variables críticas fueron la temperatura y carga del catalizador durante el pretratamiento y la suplementación con (NH4)2SO4 en la fermentación ya que permitieron mitigar la formación de alcohol fusel, y así incrementar la producción de H2 mediante RVE. Además, el uso de una torre de rectificación fue necesaria para reducir la demanda de materiales y energía del proceso. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.title | Technical and environmental assessment of the power production from agroindustrial wastes | en |
dc.type | doctoral thesis | es_CO |
dc.identifier.local | 279842 | |
dc.identifier.local | TE11027 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.subject.armarc | Hidrógeno | spa |
dc.subject.armarc | Producción de energía eléctrica | spa |
dc.subject.armarc | Ciclo de vida del producto | spa |
dc.subject.armarc | Aprovechamiento de residuos | spa |
dc.subject.armarc | Caña de azúcar | spa |
dc.subject.armarc | Aire -- Contaminación -- Medición | spa |
dcterms.references | A. Bakenne, W. Nuttall, N. Kazantzis, Int. J. Hydrogen Energy 41 (2016) 7744–7753 | eng |
dcterms.references | S. Mekhilef, R. Saidur, a. Safari, Renew. Sustain. Energy Rev. 16 (2012) 981–989. | eng |
dcterms.references | N. Sanchez, R. Ruiz, N. Infante, M. Cobo, Energies 10 (2017) 2112. | eng |
dcterms.references | N. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Waste Manag. 98 (2019) 1–13. | eng |
dcterms.references | N. Sanchez, R. Ruiz, V. Hacker, M. Cobo, K.A. Norte, Int. J. Hydrogen Energy 45 (2020) 11923–11942. | eng |
dcterms.references | A. Le Valant, A. Garron, N. Bion, F. Epron, D. Duprez, Catal. Today 138 (2008) 169–174 | eng |
dcterms.references | N. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Int. J. Hydrogen Energy 41 (2016) 5640– 5651 | eng |
dcterms.references | T. Yamazaki, N. Kikuchi, M. Katoh, T. Hirose, H. Saito, T. Yoshikawa, M. Wada, Appl. Catal. B Environ. 99 (2010) 81–88. | eng |
dcterms.references | E.J. Pires, J. a. Teixeira, T. Brányik, A. a. Vicente, Appl. Microbiol. Biotechnol. 98 (2014) 1937–1949. | eng |
dcterms.references | E. Perez-Carrillo, S.O. Serna-Saldivar, C. Chuck-Hernandez, M.L. Cortes-Callejas, Biochem. Eng. J. 67 (2012) 1–9 | eng |
dcterms.references | K. Pielech-Przybylska, M. Balcerek, U. Dziekońska-Kubczak, P. Patelski, M. Różański, Process Biochem. 73 (2018) 29–37. | eng |
dcterms.references | L.J. Jönsson, B. Alriksson, N.O. Nilvebrant, Biotechnol. Biofuels 6 (2013) 1–10 | eng |
dcterms.references | L.J. Jönsson, C. Martín, Bioresour. Technol. 199 (2016) 103–112. | eng |
dcterms.references | Y.P. Liu, P. Zheng, Z.H. Sun, Y. Ni, J.J. Dong, L.L. Zhu, Bioresour. Technol. 99 (2008) 1736–1742 | eng |
dcterms.references | C.M. Nguyen, T.N. Nguyen, G.J. Choi, Y.H. Choi, K.S. Jang, Y.J. Park, J.C. Kim, Bioresour. Technol. 151 (2014) 227–235. | eng |
dcterms.references | I. Kim, B. Lee, J.Y. Park, S.A. Choi, J.I. Han, Carbohydr. Polym. 99 (2014) 563–567. | eng |
dcterms.references | A. Tanksale, J.N. Beltramini, G.M. Lu, Renew. Sustain. Energy Rev. 14 (2010) 166–182. | eng |
dcterms.references | E.C. Bensah, M. Mensah, Int. J. Chem. Eng. 2013 (2013) 1–21. | eng |
dcterms.references | R. Zhang, X. Lu, Y. Liu, X. Wang, S. Zhang, Chem. Eng. Technol. 34 (2011) 409–414. | eng |
dcterms.references | A. Rodríguez-Chong, J.A. Ramírez, G. Garrote, M. Vázquez, J. Food Eng. 61 (2004) 143– 152. | eng |
dcterms.references | H.S. Hafid, A.R. Nor ‘Aini, M.N. Mokhtar, A.T. Talib, A.S. Baharuddin, M.S. Umi Kalsom, Waste Manag. 67 (2017) 95–105. | eng |
dcterms.references | D.A. Sievers, E.M. Kuhn, M.P. Tucker, J.D. McMillan, Bioresour. Technol. 243 (2017) 474–480. | eng |
dcterms.references | F. Yang, W. Afzal, K. Cheng, N. Liu, M. Pauly, A.T. Bell, Z. Liu, J.M. Prausnitz, Biotechnol. Bioprocess Eng. 20 (2015) 304–314 | eng |
dcterms.references | E.A. Skiba, V. V. Budaeva, O. V. Baibakova, V.N. Zolotukhin, G. V. Sakovich, Biochem. Eng. J. 126 (2017) 118–125. | eng |
dcterms.references | M. Dan, L. Senila, M. Roman, M. Mihet, M.D. Lazar, Renew. Energy 74 (2015) 27–36 | eng |
dcterms.references | U. Dziekońska-Kubczak, J. Berłowska, P. Dziugan, P. Patelski, K. Pielech-Przybylska, M. Balcerek, Energies 11 (2018). | eng |
dcterms.references | O. Kurita, J. Appl. Microbiol. 104 (2008) 1051–1058. | eng |
dcterms.references | C.L. Winder, K. Lanthaler, The Use of Continuous Culture in Systems Biology Investigations, 1st ed., Elsevier Inc., 2011. | eng |
dcterms.references | R. Tofalo, C. Chaves-López, F. Di Fabio, M. Schirone, G.E. Felis, S. Torriani, A. Paparella, G. Suzzi, Int. J. Food Microbiol. 130 (2009) 179–187. | eng |
dcterms.references | C.M. Hull, E.J. Loveridge, I.S. Donnison, D.E. Kelly, S.L. Kelly, AMB Express 4 (2014) 1–8 | eng |
dcterms.references | N. Sanchez, R. Ruiz, A. Plazas, J. Vasquez, M. Cobo, (2020). | eng |
dcterms.references | M. Wang, D. Zhou, Y. Wang, S. Wei, W. Yang, M. Kuang, L. Ma, D. Fang, S. Xu, S. Du, Fuel 184 (2016) 527–532. | eng |
dcterms.references | O.A.T. Mafe, S.M. Davies, J. Hancock, C. Du, Biomass and Bioenergy 72 (2015) 28–38. | eng |
dcterms.references | L. Laopaiboon, S. Nuanpeng, P. Srinophakun, P. Klanrit, P. Laopaiboon, Bioresour. Technol. 100 (2009) 4176–4182. | eng |
dcterms.references | C. Fu, T. Hung, J. Chen, C. Su, W. Wu, Bioresour. Technol. 101 (2010) 8750–8754. | eng |
dcterms.references | G.L. Miller, Anal. Chem. 31 (1959) 426–428. | eng |
dcterms.references | C. Goncalves, R.M. Rodriguez-Jasso, N. Gomes, J.A. Teixeira, I. Belo, Anal. Methods 2 (2010) 2046–2048 | eng |
dcterms.references | S. Bower, R. Wickramasinghe, N.J. Nagle, D.J. Schell, Bioresour. Technol. 99 (2008) 7354–7362. | eng |
dcterms.references | L. Venkateswar Rao, J.K. Goli, J. Gentela, S. Koti, Bioresour. Technol. 213 (2015) 299– 310. | eng |
dcterms.references | L. Canilha, A.K. Chandel, T. Suzane Dos Santos Milessi, F.A.F. Antunes, W. Luiz Da Costa Freitas, M. Das Graças Almeida Felipe, S.S. Da Silva, J. Biomed. Biotechnol. 2012 (2012). | eng |
dcterms.references | R. Lin, J. Cheng, L. Ding, W. Song, F. Qi, J. Zhou, K. Cen, Bioresour. Technol. 186 (2015) 8–14. | eng |
dcterms.references | W.R. Jaffe, J. Food Compos. Anal. 43 (2015) 194–202. | eng |
dcterms.references | Á.L. Alarcón, A. Orjuela, P.C. Narváez, E.C. Camacho, Food Bioprod. Process. 1 (2020) 76–90. | eng |
dcterms.references | F. Velásquez, J. Espitia, O. Mendieta, S. Escobar, J. Rodríguez, J. Food Eng. 255 (2019) 32–40. | eng |
dcterms.references | S. Ishmayana, R.P. Learmonth, U.J. Kennedy, Proc. 2nd Int. Semin. Chem. 2011 (2011) 379–385. | eng |
dcterms.references | B.Z. Tizazu, V.S. Moholkar, Bioresour. Technol. 250 (2018) 197–203. | eng |
dcterms.references | D. Wang, Y. Xu, J. Hu, G. Zhao, J. Inst. Brew. 110 (2004) 340–346. | eng |
dcterms.references | J.N. de Vasconcelos, in: F. Santos, A. Borem, C. Caldas (Eds.), Sugarcane. Agric. Prod. Bioenergy Ethanol, 2015, pp. 311–340. | eng |
dcterms.references | A.J. a van Maris, D. a. Abbott, E. Bellissimi, J. van den Brink, M. Kuyper, M. a H. Luttik, H.W. Wisselink, W.A. Scheffers, J.P. van Dijken, J.T. Pronk, Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 90 (2006) 391–418. | eng |
dcterms.references | A.O. Olaniran, L. Hiralal, M.P. Mokoena, (2017) 13–23. | eng |
dcterms.references | U. Dziekońska-Kubczak, J. Berlowska, P. Dziugan, P. Patelski, K. Pielech-Przybylska, M. Balcerek, Energies 11 (2018) 2153–2170. | eng |
dcterms.references | H. Lee, D.H. Cho, Y.H. Kim, S.J. Shin, S.B. Kim, S.O. Han, J. Lee, S.W. Kim, C. Park, Biotechnol. Bioprocess Eng. 16 (2011) 755–760. | eng |
dcterms.references | P. Hernandez-Orte, M. Bely, J. Cacho, V. Ferreira, Aust. J. Grape Wine Res. 12 (2006) 150–160. | eng |
dcterms.references | E.E. Vidal, G.M. De Billerbeck, D.A. Simões, A. Schuler, J.M. François, M.A. De Morais, Food Chem. 138 (2013) 701–708. | eng |
dcterms.references | G. Kłosowski, D. Mikulski, D. Macko, Eur. Food Res. Technol. 240 (2015) 233–242. | eng |
dcterms.references | A. Tsugita, J.-J. Scheffler, Eur. J. Biochem. 124 (1982) 585–588. | eng |
dcterms.references | L. a Hazelwood, J.M. Daran, a J. a van Maris, J.T. Pronk, J.R. Dickinson, Appl. Environ. Microbiol. 74 (2008) 2259–2266. | eng |
dcterms.references | Z.L. Liu, M. Ma, Appl. Microbiol. Biotechnol. 104 (2020) 3473–3492 | eng |
dcterms.references | X. Wang, Z.L. Liu, X. Zhang, M. Ma, Appl. Microbiol. Biotechnol. 101 (2017) 4981–4993. | eng |
dcterms.references | R.E. Dack, G.W. Black, G. Koutsidis, S.J. Usher, Food Chem. 232 (2017) 595–601 | eng |
dcterms.references | Y. Zheng, C. Lee, C. Yu, Y. Cheng, R. Zhang, B.M. Jenkins, J.S. Vandergheynst, Appl. Energy 105 (2013) 1–7 | eng |
dcterms.references | Y. Vasserot, F. Mornet, P. Jeandet, Food Chem. 119 (2010) 1220–1223. | eng |
dcterms.references | E. Casey, M. Sedlak, N.W.Y. Ho, N.S. Mosier, FEMS Yeast Res. 10 (2010) 385–393. | eng |
dcterms.references | T. Graves, N. V. Narendranath, K. Dawson, R. Power, J. Ind. Microbiol. Biotechnol. 33 (2006) 469–474. | eng |
dcterms.references | J.K. Shihadeh, H. Huang, K.D. Rausch, M.E. Tumbleson, V. Singh, Appl. Biochem. Biotechnol. 173 (2014) 486–500 | eng |
dcterms.references | F.D. Mayer, L.A. Feris, N.R. Marcilio, P.B. Staudt, R. Hoffmann, V. Baldo, Brazilian J. Chem. Eng. 32 (2015) 585–593. | eng |
dcterms.references | R. Zhang, X. Lu, Y. Sun, X. Wang, S. Zhang, J. Chem. Technol. Biotechnol. 86 (2011) 306–314. | eng |
dcterms.references | L.F. Gutiérrez-Mosquera, S. Arias-Giraldo, A.M. Ceballos-Peñalosa, Int. J. Chem. Eng. (2018) 1–10 | spa |
dcterms.references | O. Mendieta, G. Madrigal, L. Castro, J. Rodríguez, H. Escalante, Bioresour. Technol. 297 (2020) 122364. | spa |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |