Mostrar el registro sencillo del ítem

dc.contributor.authorMosquera Dussán, Oscar Leonardo
dc.contributor.authorBotero Rosas, Daniel Alfonso
dc.contributor.authorCagy, Mauricio
dc.contributor.authorHenao Idárraga, Rubén Darío
dc.date.accessioned10/20/2020 11:10
dc.date.available2020-10-20T16:10:29Z
dc.date.issued2015-02-09
dc.identifier.issn0120-6230
dc.identifier.otherhttps://revistas.udea.edu.co/index.php/ingenieria/article/view/17958
dc.identifier.urihttp://hdl.handle.net/10818/43735
dc.description12 páginaes_CO
dc.description.abstractDigital signal processing of the electroencephalogram (EEG) became important in monitoring depth of anesthesia (DoA) being used to provide a better anesthetic technique. The objective of this work was to conduct a review about nonlinear mathematical methods applied recently to the analyses of nonlinear non-stationary EEG signal. A review was conducted showing time- and frequency-domain nonlinear mathematical methods recently applied to EEG analysis: Approximate Entropy, Sample Entropy, Spectral Entropy, Permutation Entropy, Wavelet Transform, Wavelet Entropy, Bispectrum, Bicoherence and Hilbert Huang Transform. Some algorithms were implemented and tested in one EEG signal record from a patient at The Sabana University Clinic. Recently published results from different methods are discussed. Nonlinear techniques such as entropy analysis in time domain and combination with wavelet transform, and Hilbert Huang transform in frequency domain have shown promising results in classifications of depth of anesthesia stages.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherRevista Facultad de Ingenieria Universidad de Antioquiaes_CO
dc.relation.ispartofseriesRev. Fac. Ing. Univ. Antioquia N. º 75 pp. 45-56, June, 2015
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectDepth of anesthesia monitoringes_CO
dc.subjectEEG features extractiones_CO
dc.subjectNonlinear complexity analyseses_CO
dc.subjectDigital signal processinges_CO
dc.titleNonlinear analysis of the electroencephalogram in depth of anesthesiaes_CO
dc.title.alternativeAnálisis no lineal de la señal de electroencefalograma en profundidad anestésicaes_CO
dc.typearticleen
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.17533/udea.redin.n75a06


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International