Mostrar el registro sencillo del ítem
Participation of the infralimbic cortex on the initial modulation of the reacquisition of odor discrimination task
dc.contributor.author | Prada Acosta, Lina Paola | |
dc.date.accessioned | 2020-09-01T16:40:01Z | |
dc.date.available | 2020-09-01T16:40:01Z | |
dc.date.issued | 2020-07-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/43101 | |
dc.description | 23 páginas | es_CO |
dc.description.abstract | The mechanisms by which the infralimbic cortex (IL) participates in cognitive flexibility (cognitive flexibility) in odors discrimination task (ODT) remain poorly understood. Two experiments were carried out on male Wistar rats that were submitted to infusions of bilateral N-methyl-D-aspartate (NMDA) in IL post-training of ODT and they were compared to a Vehicle group. In experiment I, we evaluated the effect of the lesion in a four-trial session, where the spatial component was rotated according to clockwise. In experiment II, the effects of the lesion were assessed in a five-trial session, in which the spatial component was rotated randomly. The results show that the animals had a deterioration both both latenc and total errors during the first trials only in reacquisition (RAC); however, in perseverance, no deficit was seen. These data suggest that the IL might play a role in the modulation of the initial phase of the RAC in ODT, possibly by deafferentation of the role that IL has within the cortical-limbicstriated circuit, especially with the anterior cingulate cortex. | eng |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | instname:Universidad de La Sabana | es_CO |
dc.source | reponame:Intellectum Repositorio Universidad de La Sabana | es_CO |
dc.subject | Psicología experimental | es_CO |
dc.subject | Animales -- Hábitos y conducta | es_CO |
dc.subject | Conducta humana | es_CO |
dc.subject | Corteza prefrontal | es_CO |
dc.subject | Percepción -- Pruebas | es_CO |
dc.subject | Control de olores | es_CO |
dc.title | Participation of the infralimbic cortex on the initial modulation of the reacquisition of odor discrimination task | eng |
dc.title.alternative | Participación de la corteza infralímbica en la modulación inicial de la tarea de readquisición de discriminación de olores | |
dc.type | bachelorThesis | es_CO |
dc.publisher.program | Psicología | es_CO |
dc.publisher.department | Facultad de Psicología | es_CO |
dc.identifier.local | 277973 | |
dc.identifier.local | TE10779 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Psicólogo | es_CO |
dcterms.references | Ashwell, R., & Ito, R. (2014). Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalization. Frontiers in Behavioral Neuroscience,8,63. doi:10.3389/fnbeh.2014.00063 | eng |
dcterms.references | Barker, J. M., Torregrossa, M. M., & Taylor, J. R. (2013). Bidirectional modulation of infralimbic dopamine D1 and D2 receptor activity regulates flexible reward seeking. Frontiers in Neuroscience, 7, 126. doi:10.3389/fnins.2013.00126 | eng |
dcterms.references | Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, 20(11), 4320-4324 | reng |
dcterms.references | Bloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0106-x | eng |
dcterms.references | Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179(2), 219–228. doi:10.1016/j.bbr.2007.02.005 | eng |
dcterms.references | Boulougouris, V., & Robbins, T. W. (2009). Pre-surgical training ameliorates orbitofrontalmediated impairments in spatial reversal learning. Behavioural brain research, 197(2), 469-475. doi:10.1016/j.bbr.2008.10.005 | eng |
dcterms.references | Burgos-Robles, A., Bravo-Rivera, H., & Quirk, G. J. (2013). Prelimbic and Infralimbic Neurons Signal Distinct Aspects of Appetitive Instrumental Behavior. PLoS ONE, 8(2), e57575. doi:10.1371/journal.pone.0057575 | eng |
dcterms.references | Bussey, T. J., Muir, J. L., Everitt, B. J., & Robbins, T. W. (1997). Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behavioral Neuroscience, 111(5), 920– 936. doi:10.1037/0735-7044.111.5.920 | eng |
dcterms.references | Brushfield, A. M., Luu, T. T., Callahan, B. D., & Gilbert, P. E. (2008). A comparison of discrimination and reversal learning for olfactory and visual stimuli in aged rats. Behavioral neuroscience, 122(1), 54-62. doi.org/10.1037/0735-7044.122.1.54 | eng |
dcterms.references | Chudasama, Y., & Robbins, T. W. (2003). Dissociable Contributions of the Orbitofrontal and Infralimbic Cortex to Pavlovian Autoshaping and Discrimination Reversal Learning: Further Evidence for the Functional Heterogeneity of the Rodent Frontal Cortex. The Journal of Neuroscience, 23(25), 8771–8780. doi:10.1523/jneurosci.23-25-08771.2003 | eng |
dcterms.references | Dalton, G. L., Wang, N. Y., Phillips, A. G., & Floresco, S. B. (2016). Multifaceted contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. Journal of Neuroscience, 36(6),1996-2006. doi:10.1523/jneurosci.3366-15.2016 | eng |
dcterms.references | Dhawan, S. S., Tait, D. S., & Brown, V. J. (2019). More rapid reversal learning following overtraining in the rat is evidence that behavioural and cognitive flexibility are dissociable. Behavioural brain research, 363, 45-52.doi:10.1016/j.bbr.2019.01.055 | eng |
dcterms.references | Elston, T. W., Croy, E., & Bilkey, D. K. (2019). Communication between the anterior cingulate cortex and ventral tegmental area during a cost-benefit reversal task. Cell reports, 26(9), 2353-2361.e3. doi:10.1016/j.celrep.2019.01.113 | eng |
dcterms.references | Ferry, A. T., Lu, X. C. M., & Price, J. L. (2000). Effects of excitotoxic lesions in the ventral striatopallidal–thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response. Experimental Brain Research, 131(3), 320-335. doi:10.1007/s002219900240 | eng |
dcterms.references | Fitoussi, A., Renault, P., Le Moine, C., Coutureau, E., Cador, M., & Dellu-Hagedorn, F. (2018). Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks. Brain Structure and Function, 223(2), 897-912. doi:10.1007/s00429-017-1530-z | eng |
dcterms.references | Gisquet-Verrier, P., & Delatour, B. (2006). The role of the rat prelimbic/infralimbic cortex in working memory: not involved in the short-term maintenance but in monitoring and processing functions. Neuroscience, 141(2),585-596. doi.org/ 10.1016/ j.neuroscience.2006.04.009 | eng |
dcterms.references | Hayen, A., Tamuri, S., Gates, A., & Ito, R. (2014). Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference. Psychopharmacology, 231(12), 2483-2492. doi:10.1007/s00213-013-3414-0 | eng |
dcterms.references | Hamilton, D. A., & Brigman, J. L. (2015). Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. Genes, Brain and Behavior, 14(1), 4-21. doi:10.1111/gbb.12191 | eng |
dcterms.references | Hoover, W., & Vertes, R. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, 212(2), 149-179. doi: 10.1007/s00429-007-0150-4 | eng |
dcterms.references | Hoover, W. B., & Vertes, R. P. (2012). Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Structure & Function, 217(2), 191-209. doi:10.1007/s00429-011-0345-6 | eng |
dcterms.references | Khalaf, O., & Gräff, J. (2019). Reactivation of recall-induced neurons in the infralimbic cortex and the basolateral amygdala after remote fear memory attenuation. Frontiers in Molecular Neuroscience, 12, 70. doi:10.3389/fnmol.2019.00070 | eng |
dcterms.references | Kim, J., & Ragozzino, M. E. (2005). The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiology of learning and memory, 83(2), 125- 133. doi:10.1016/j.nlm.2004.10.003 | eng |
dcterms.references | Klanker, M., Post, G., Joosten, R., Feenstra, M., & Denys, D. (2013). Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning. Behavioural brain research, 245, 7-12. doi:10.1016/j.bbr.2013.01.043 | eng |
dcterms.references | Li, L., & Shao, J. (1998). Restricted lesions to ventral prefrontal subareas block reversal learning but not visual discrimination learning in rats. Physiology & Behavior, 65(2), 371–379. doi:10.1016/s0031-9384(98)00216-9 | eng |
dcterms.references | Oualian, C., & Gisquet-Verrier, P. (2010). The differential involvement of the prelimbic and infralimbic cortices in response conflict affects behavioral flexibility in rats trained in a new automated strategy-switching task. Learning and Memory, 17(12), 654–668. doi.org/10.1101/lm.1858010 | eng |
dcterms.references | Paxinos,G., & Watson, C. (2006). The rat brain in stereotaxic coordinates (6th ed.). Sydney, Australia: Academic Press. | eng |
dcterms.references | Quiroz-Padilla, M. F., Guillazo-Blanch, G., Vale-Martínez, A., Torras-García, M., & MartíNicolovius, M. (2007). Effects of parafascicular excitotoxic lesions on two-way active avoidance and odor-discrimination. Neurobiology of learning and memory, 88(2), 198- 207. doi:10.1016/j.nlm.2007.06.002 | eng |
dcterms.references | Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York academy of sciences, 1121(1), 355-375. doi:10.1196/annals.1401.013 | eng |
dcterms.references | Ragozzino, M. E., Detrick, S., & Kesner, R. P. (1999). Involvement of the prelimbic– infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience, 19(11), 4585-4594. | eng |
dcterms.references | Ragozzino, M. E., & Rozman, S. (2007). The effect of rat anterior cingulate inactivation on cognitive flexibility. Behavioral neuroscience, 121(4), 698-706. doi.org/10.1037/ 0735-7044.121.4.698 | eng |
dcterms.references | Ragozzino, M. E., Kim, J., Hassert, D., Minniti, N., & Kiang, C. (2003). The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behavioral Neuroscience, 117(5), 1054–1065. doi:10.1037/0735-7044.117.5.1054 | eng |
dcterms.references | Russo, A. S., Lee, J., & Parsons, R. G. (2019). Individual variability in the recall of fear extinction is associated with phosphorylation of mitogen-activated protein kinase in the infralimbic cortex. Psychopharmacology. doi:10.1007/s00213-019-05195-2 | eng |
dcterms.references | Torras-Garcia, M., Lelong, J., Tronel, S., & Sara, S. J. (2005). Reconsolidation after remembering an odor-reward association requires NMDA receptors. Learning & memory, 12(1), 18-22 | eng |
dcterms.references | Tronel, S., & Sara, S. J. (2002). Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learning & Memory, 9(3), 105-111.doi:10.1101/lm.47802 | eng |
dcterms.references | Wood, M., Adil, O., Wallace, T., Fourman, S., Wilson, S. P., Herman, J. P., & Myers, B. (2019). Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Structure and Function, 224(1), 73–97. https://doi.org/10.1007/s00429-018-1762-6 | eng |
dcterms.references | Zeeb, F. D., Baarendse, P. J. J., Vanderschuren, L. J. M. J., & Winstanley, C. A. (2015). Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task. Psychopharmacology, 232(24), 4481–4491. doi:10.1007/s00213-015- 4075-y | eng |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Psicología [882]