Mostrar el registro sencillo del ítem

dc.contributor.authorPrada Acosta, Lina Paola
dc.date.accessioned2020-09-01T16:40:01Z
dc.date.available2020-09-01T16:40:01Z
dc.date.issued2020-07-13
dc.identifier.urihttp://hdl.handle.net/10818/43101
dc.description23 páginases_CO
dc.description.abstractThe mechanisms by which the infralimbic cortex (IL) participates in cognitive flexibility (cognitive flexibility) in odors discrimination task (ODT) remain poorly understood. Two experiments were carried out on male Wistar rats that were submitted to infusions of bilateral N-methyl-D-aspartate (NMDA) in IL post-training of ODT and they were compared to a Vehicle group. In experiment I, we evaluated the effect of the lesion in a four-trial session, where the spatial component was rotated according to clockwise. In experiment II, the effects of the lesion were assessed in a five-trial session, in which the spatial component was rotated randomly. The results show that the animals had a deterioration both both latenc and total errors during the first trials only in reacquisition (RAC); however, in perseverance, no deficit was seen. These data suggest that the IL might play a role in the modulation of the initial phase of the RAC in ODT, possibly by deafferentation of the role that IL has within the cortical-limbicstriated circuit, especially with the anterior cingulate cortex.eng
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectPsicología experimentales_CO
dc.subjectAnimales -- Hábitos y conductaes_CO
dc.subjectConducta humanaes_CO
dc.subjectCorteza prefrontales_CO
dc.subjectPercepción -- Pruebases_CO
dc.subjectControl de oloreses_CO
dc.titleParticipation of the infralimbic cortex on the initial modulation of the reacquisition of odor discrimination taskeng
dc.title.alternativeParticipación de la corteza infralímbica en la modulación inicial de la tarea de readquisición de discriminación de olores
dc.typebachelorThesises_CO
dc.publisher.programPsicologíaes_CO
dc.publisher.departmentFacultad de Psicologíaes_CO
dc.identifier.local277973
dc.identifier.localTE10779
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreePsicólogoes_CO
dcterms.referencesAshwell, R., & Ito, R. (2014). Excitotoxic lesions of the infralimbic, but not prelimbic cortex facilitate reversal of appetitive discriminative context conditioning: the role of the infralimbic cortex in context generalization. Frontiers in Behavioral Neuroscience,8,63. doi:10.3389/fnbeh.2014.00063eng
dcterms.referencesBarker, J. M., Torregrossa, M. M., & Taylor, J. R. (2013). Bidirectional modulation of infralimbic dopamine D1 and D2 receptor activity regulates flexible reward seeking. Frontiers in Neuroscience, 7, 126. doi:10.3389/fnins.2013.00126eng
dcterms.referencesBirrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. Journal of Neuroscience, 20(11), 4320-4324reng
dcterms.referencesBloodgood, D. W., Sugam, J. A., Holmes, A., & Kash, T. L. (2018). Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0106-xeng
dcterms.referencesBoulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179(2), 219–228. doi:10.1016/j.bbr.2007.02.005eng
dcterms.referencesBoulougouris, V., & Robbins, T. W. (2009). Pre-surgical training ameliorates orbitofrontalmediated impairments in spatial reversal learning. Behavioural brain research, 197(2), 469-475. doi:10.1016/j.bbr.2008.10.005eng
dcterms.referencesBurgos-Robles, A., Bravo-Rivera, H., & Quirk, G. J. (2013). Prelimbic and Infralimbic Neurons Signal Distinct Aspects of Appetitive Instrumental Behavior. PLoS ONE, 8(2), e57575. doi:10.1371/journal.pone.0057575eng
dcterms.referencesBussey, T. J., Muir, J. L., Everitt, B. J., & Robbins, T. W. (1997). Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behavioral Neuroscience, 111(5), 920– 936. doi:10.1037/0735-7044.111.5.920eng
dcterms.referencesBrushfield, A. M., Luu, T. T., Callahan, B. D., & Gilbert, P. E. (2008). A comparison of discrimination and reversal learning for olfactory and visual stimuli in aged rats. Behavioral neuroscience, 122(1), 54-62. doi.org/10.1037/0735-7044.122.1.54eng
dcterms.referencesChudasama, Y., & Robbins, T. W. (2003). Dissociable Contributions of the Orbitofrontal and Infralimbic Cortex to Pavlovian Autoshaping and Discrimination Reversal Learning: Further Evidence for the Functional Heterogeneity of the Rodent Frontal Cortex. The Journal of Neuroscience, 23(25), 8771–8780. doi:10.1523/jneurosci.23-25-08771.2003eng
dcterms.referencesDalton, G. L., Wang, N. Y., Phillips, A. G., & Floresco, S. B. (2016). Multifaceted contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. Journal of Neuroscience, 36(6),1996-2006. doi:10.1523/jneurosci.3366-15.2016eng
dcterms.referencesDhawan, S. S., Tait, D. S., & Brown, V. J. (2019). More rapid reversal learning following overtraining in the rat is evidence that behavioural and cognitive flexibility are dissociable. Behavioural brain research, 363, 45-52.doi:10.1016/j.bbr.2019.01.055eng
dcterms.referencesElston, T. W., Croy, E., & Bilkey, D. K. (2019). Communication between the anterior cingulate cortex and ventral tegmental area during a cost-benefit reversal task. Cell reports, 26(9), 2353-2361.e3. doi:10.1016/j.celrep.2019.01.113eng
dcterms.referencesFerry, A. T., Lu, X. C. M., & Price, J. L. (2000). Effects of excitotoxic lesions in the ventral striatopallidal–thalamocortical pathway on odor reversal learning: inability to extinguish an incorrect response. Experimental Brain Research, 131(3), 320-335. doi:10.1007/s002219900240eng
dcterms.referencesFitoussi, A., Renault, P., Le Moine, C., Coutureau, E., Cador, M., & Dellu-Hagedorn, F. (2018). Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks. Brain Structure and Function, 223(2), 897-912. doi:10.1007/s00429-017-1530-zeng
dcterms.referencesGisquet-Verrier, P., & Delatour, B. (2006). The role of the rat prelimbic/infralimbic cortex in working memory: not involved in the short-term maintenance but in monitoring and processing functions. Neuroscience, 141(2),585-596. doi.org/ 10.1016/ j.neuroscience.2006.04.009eng
dcterms.referencesHayen, A., Tamuri, S., Gates, A., & Ito, R. (2014). Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference. Psychopharmacology, 231(12), 2483-2492. doi:10.1007/s00213-013-3414-0eng
dcterms.referencesHamilton, D. A., & Brigman, J. L. (2015). Behavioral flexibility in rats and mice: contributions of distinct frontocortical regions. Genes, Brain and Behavior, 14(1), 4-21. doi:10.1111/gbb.12191eng
dcterms.referencesHoover, W., & Vertes, R. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, 212(2), 149-179. doi: 10.1007/s00429-007-0150-4eng
dcterms.referencesHoover, W. B., & Vertes, R. P. (2012). Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Structure & Function, 217(2), 191-209. doi:10.1007/s00429-011-0345-6eng
dcterms.referencesKhalaf, O., & Gräff, J. (2019). Reactivation of recall-induced neurons in the infralimbic cortex and the basolateral amygdala after remote fear memory attenuation. Frontiers in Molecular Neuroscience, 12, 70. doi:10.3389/fnmol.2019.00070eng
dcterms.referencesKim, J., & Ragozzino, M. E. (2005). The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiology of learning and memory, 83(2), 125- 133. doi:10.1016/j.nlm.2004.10.003eng
dcterms.referencesKlanker, M., Post, G., Joosten, R., Feenstra, M., & Denys, D. (2013). Deep brain stimulation in the lateral orbitofrontal cortex impairs spatial reversal learning. Behavioural brain research, 245, 7-12. doi:10.1016/j.bbr.2013.01.043eng
dcterms.referencesLi, L., & Shao, J. (1998). Restricted lesions to ventral prefrontal subareas block reversal learning but not visual discrimination learning in rats. Physiology & Behavior, 65(2), 371–379. doi:10.1016/s0031-9384(98)00216-9eng
dcterms.referencesOualian, C., & Gisquet-Verrier, P. (2010). The differential involvement of the prelimbic and infralimbic cortices in response conflict affects behavioral flexibility in rats trained in a new automated strategy-switching task. Learning and Memory, 17(12), 654–668. doi.org/10.1101/lm.1858010eng
dcterms.referencesPaxinos,G., & Watson, C. (2006). The rat brain in stereotaxic coordinates (6th ed.). Sydney, Australia: Academic Press.eng
dcterms.referencesQuiroz-Padilla, M. F., Guillazo-Blanch, G., Vale-Martínez, A., Torras-García, M., & MartíNicolovius, M. (2007). Effects of parafascicular excitotoxic lesions on two-way active avoidance and odor-discrimination. Neurobiology of learning and memory, 88(2), 198- 207. doi:10.1016/j.nlm.2007.06.002eng
dcterms.referencesRagozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York academy of sciences, 1121(1), 355-375. doi:10.1196/annals.1401.013eng
dcterms.referencesRagozzino, M. E., Detrick, S., & Kesner, R. P. (1999). Involvement of the prelimbic– infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. Journal of Neuroscience, 19(11), 4585-4594.eng
dcterms.referencesRagozzino, M. E., & Rozman, S. (2007). The effect of rat anterior cingulate inactivation on cognitive flexibility. Behavioral neuroscience, 121(4), 698-706. doi.org/10.1037/ 0735-7044.121.4.698eng
dcterms.referencesRagozzino, M. E., Kim, J., Hassert, D., Minniti, N., & Kiang, C. (2003). The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behavioral Neuroscience, 117(5), 1054–1065. doi:10.1037/0735-7044.117.5.1054eng
dcterms.referencesRusso, A. S., Lee, J., & Parsons, R. G. (2019). Individual variability in the recall of fear extinction is associated with phosphorylation of mitogen-activated protein kinase in the infralimbic cortex. Psychopharmacology. doi:10.1007/s00213-019-05195-2eng
dcterms.referencesTorras-Garcia, M., Lelong, J., Tronel, S., & Sara, S. J. (2005). Reconsolidation after remembering an odor-reward association requires NMDA receptors. Learning & memory, 12(1), 18-22eng
dcterms.referencesTronel, S., & Sara, S. J. (2002). Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learning & Memory, 9(3), 105-111.doi:10.1101/lm.47802eng
dcterms.referencesWood, M., Adil, O., Wallace, T., Fourman, S., Wilson, S. P., Herman, J. P., & Myers, B. (2019). Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Structure and Function, 224(1), 73–97. https://doi.org/10.1007/s00429-018-1762-6eng
dcterms.referencesZeeb, F. D., Baarendse, P. J. J., Vanderschuren, L. J. M. J., & Winstanley, C. A. (2015). Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task. Psychopharmacology, 232(24), 4481–4491. doi:10.1007/s00213-015- 4075-yeng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International