Mostrar el registro sencillo del ítem

dc.contributor.advisorCamacho, Edisson T.
dc.contributor.advisorThomas, Olivier P.
dc.contributor.authorSantacruz Cifuentes, Liliana Andrea
dc.date.accessioned8/24/2020 10:45
dc.date.available8/24/2020 10:45
dc.date.issued2020-06-11
dc.identifier.urihttp://hdl.handle.net/10818/42976
dc.description102 páginases_CO
dc.description.abstractLos océanos cubren un poco mas de dos terceras partes de la superficie de la tierra y los organismos que en ellos viven constituyen cerca del 2% de la materia orgánica presente en los mares; en particular, las aguas cálidas del Mar Caribe contribuyen a la diversidad de la fauna marina, en donde, los octocorales son la macrofauna arrecifal más visible. Estos organismos, son fuente productiva de una gran diversidad de compuestos químicos los cuales les sirven como defensa química contra depredadores, pero también mucho de ellos han presentado actividades biológicas importantes para combatir diferentes enfermedades; por lo cual, es importante investigar sobre nuevas herramientas de estudio que permitan explorar este gran potencial. Por lo anterior, en este proyecto se estudió la relación de la actividad citotóxica de algunos octocorales del Caribe Colombiano con respecto a su composición metabólica, usando diferentes herramientas como la dereplicación, útil en la identificación temprana de compuestos nuevos o conocidos con actividad biológica, el uso de Redes Moleculares de Productos Naturales (GNPS) que con el uso del software Cytoscape permitió observar “cluster” o agrupaciones de moléculas con patrones de fragmentación similares y finalmente; la herramienta metabolómica, que permitió detectar un gran número de metabolitos presentes en los organismos estudiados. Para el desarrollo de este proyecto, se utilizaron técnicas cromatográficas de alta eficiencia: cromatografía líquida ultra eficiente junto con espectrometría de masas de alta resolución (UPLCHRMS / Agilent 6540) y resonancia magnética nuclear (RMN / Agilent 600 MHz); que ayudó en la determinación del perfil global de los metabolitos presentes en los extractos octocorales; además, en los modelos generados a partir del análisis multivariado de componentes principales (PCA) y análisis discriminantes.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectAnimales marinoses_CO
dc.subjectOrganismos marinoses_CO
dc.subjectBiotecnología moleculares_CO
dc.subjectResonancia magnética nucleares_CO
dc.subjectAnálisis multivariantees_CO
dc.titleUse of metabolomic and dereplication tools in the study of the chemical composition of some octocorals of the colombian caribbean and their cytotoxic activityen
dc.typedoctoral thesises_CO
dc.identifier.local277707
dc.identifier.localTE10735
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dcterms.referencesBlunt, J.; Copp, B.; Keyzers, R.; Munro, M.; Prinsep, M. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [CrossRef] [PubMed]en
dcterms.referencesDyshlovoy, S.; Honecker, F. Marine Compounds and Cancer: 2017 Updates. Mar. Drugs 2018, 16, 41. [CrossRef] [PubMed]en
dcterms.referencesRuiz Torres, V.; Encinar, J.A.; Herranz López, M.; Pérez Sánchez, A.; Galiano, V.; Barrajón Catalán, E.; Micol, V. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 2017, 22, 1037. [CrossRef] [PubMed]en
dcterms.referencesBennett, D. Growing Pains for Metabolomics. Scientist 2005, 19, 25–28. [CrossRef]en
dcterms.referencesOjima, I.; Chakravarty, S.; Inoue, T.; Lin, S.; He, L.; Horwitz, S.B.; Kuduk, S.D.; Danishefsky, S.J. A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc. Natl. Acad. Sci. USA 1999, 96, 4256–4261. [CrossRef] [PubMed]en
dcterms.referencesCorrea, H.; Valenzuela, A.L.; Ospina, L.F.; Duque, C. Anti-inflammatory effects of the gorgonian Pseudopterogorgia elisabethae collected at the Islands of Providencia and San Andrés (SW Caribbean). J. Inflamm. 2009, 6, 5. [CrossRef] [PubMed]en
dcterms.referencesCorrea, H.; Aristizabal, F.; Duque, C.; Kerr, R. Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar. Drugs 2011, 9, 334–343. [CrossRef] [PubMed]en
dcterms.referencesMarrero, J.; Rodríguez, A.D.; Baran, P.; Raptis, R.G. Ciereszkolide: Isolation and structure characterization of a novel rearranged cembrane from the caribbean sea plume Pseudopterogorgia kallos. Eur. J. Org. Chem. 2004, 3909–3912. [CrossRef]en
dcterms.referencesLook, S.A.; Fenical, W.; Jacobst, R.S.; Clardyt, J.O.N. The pseudopterosins: Anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc. Natl. Acad. Sci. USA 1986, 83, 6238–6240. [CrossRef] [PubMed]en
dcterms.referencesDeng, L.; Gu, H.; Zhu, J.; Nagana Gowda, G.A.; Djukovic, D.; Chiorean, E.G.; Raftery, D. Combining NMR and LC/MS using backward variable elimination: Metabolomics analysis of colorectal cancer, polyps, and healthy controls. Anal. Chem. 2016, 88, 7975–7983. [CrossRef] [PubMed]en
dcterms.referencesLindon, J.C.; Holmes, E.; Bollard, M.E.; Stanley, E.G.; Nicholson, J.K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004, 9, 1–31. [CrossRef] [PubMed]en
dcterms.referencesTistaert, C.; Chataigné, G.; Dejaegher, B.; Rivière, C.; Hoai, N.N.; Van, M.C.; Quetin-leclercq, J.; Heyden, Y. Vander Multivariate data analysis to evaluate the fingerprint peaks responsible for the cytotoxic activity of Mallotus species. J. Chromatogr. B 2012, 910, 103–113. [CrossRef] [PubMed]en
dcterms.referencesLeal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of marine invertebrates for new natural products—A chemical and zoogeographical perspective. Molecules 2012, 17, 9842–9854. [CrossRef] [PubMed]en
dcterms.referencesWei, X.; Rodríguez, A.D.; Baran, P.; Raptis, R.G. Dolabellane-type diterpenoids with antiprotozoan activity from a southwestern Caribbean gorgonian octocoral of the genus Eunicea. J. Nat. Prod. 2010, 73, 925–934. [CrossRef] [PubMed]en
dcterms.referencesMaille, G.; Qin, C.; Siuzdak, G. Nonlinear Data Alignment for UPLC—MS and HPLC—MS Based Metabolomics: Quantitative Analysis of Endogenous and Exogenous Metabolites in Human Serum. Anal. Chem. 2006, 78, 3289–3295. [CrossRef]en
dcterms.referencesSzymanska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 14. [CrossRef] [PubMed]en
dcterms.referencesRantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemiometr. 2006, 20, 341–351. [CrossRef]en
dcterms.referencesGoecks, J.; Nekrutenko, A.; Taylor, J.; Afgan, E.; Ananda, G.; Baker, D.; Blankenberg, D.; Chakrabarty, R.; Coraor, N.; Goecks, J.; et al. Galaxy: A comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol. 2010, 11, 13. [CrossRef]en
dcterms.referencesHaug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; De Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013, 41, 781–786. [CrossRef]en
dcterms.referencesHostettman, K. Methods in Plant Biochemistry. Assays for Bioactivity; Academic Press: London, UK, 1991.en
dcterms.referencesXia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, 652–660. [CrossRef] [PubMed]en
dcterms.referencesMoltu, S.J.; Sachse, D.; Blakstad, E.W.; Strømmen, K.; Nakstad, B.; Almaas, A.N.; Westerberg, A.C.; Rønnestad, A.; Brække, K.; Veierød, M.B.; et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients 2014, 6, 1913–1930. [CrossRef] [PubMed]en
dcterms.referencesChiu, C.Y.; Yeh, K.W.; Lin, G.; Chiang, M.H.; Yang, S.C.; Chao, W.J.; Yao, T.C.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; et al. Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE 2016, 11, e0149823. [CrossRef] [PubMed]en
dcterms.referencesXia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef] [PubMed]en
dcterms.referencesHubert, J.; Nuzillard, J.M.; Renault, J.H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [CrossRef]en
dcterms.referencesNational Center for Biotechnology Information Eduenone. Available online: https://pubchem.ncbi.nlm.nih. gov/compound/10424127 (accessed on 25 September 2018).en
dcterms.referencesNational Center for Biotechnology Information Dolabellatrienone. Available online: https://pubchem.ncbi. nlm.nih.gov/compound/10469260 (accessed on 25 September 2018).en
dcterms.referencesWolf, S.; Schmidt, S.; Müller Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 1, 43. [CrossRef]en
dcterms.referencesLook, S.A.; Fenical, W. New Bicyclic Diterpenoids from the Caribbean Gorgonian Octocoral Eunicea calyculata. J. Org. Chem. 1982, 47, 4129–4134. [CrossRef]en
dcterms.referencesPatel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-Vitro cytotoxicity activity of Solanum Nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci. 2009, 1, 38–47.en
dcterms.referencesGao, Y.; Xiao, W.; Liu, H.C.; Wang, J.R.; Yao, L.G.; Ouyang, P.K.; Wang, D.C.; Guo, Y.W. Clavirolide G, a new rare dolabellane-type diterpenoid from the Xisha soft coral Clavularia viridis. Chin. Chem. Lett. 2017, 28, 905–908. [CrossRef]en
dcterms.referencesShen, Y.C.; Pan, Y.L.; Ko, C.L.; Kuo, Y.H.; Chen, C.Y. New dolabellanes from the Taiwanese soft coral clavularia inflata. J. Chin. Chem. Soc. 2003, 50, 471–476. [CrossRef]en
dcterms.referencesChang, K.C.; Duh, C.Y.; Chen, I.S.; Tsai, I.L. A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative formosan Casearia membranacea. Planta Med. 2003, 69, 667–672. [CrossRef] [PubMed]en
dcterms.referencesDuh, C.Y.; Chia, M.C.; Wang, S.K.; Chen, H.J.; El-Gamal, A.A.H.; Dai, C.F. Cytotoxic dolabellane diterpenes from the Formosan soft coral Clavularia inflata. J. Nat. Prod. 2001, 64, 1028–1031. [CrossRef] [PubMed]en
dcterms.referencesFrederickm, M. Bayer the Shallow-Water Octocorallia of the West Indian Region: A Manual for Marine Biologists; Smithsonian Institution: Washington, DC, USA, 1988.en
dcterms.referencesSánchez, J.A.; Wirshing, H.H. A field key to the identification of tropical western Atlantic zooxanthellate octocorals (Octocorallia: Cnidaria). Caribb. J. Sci. 2005, 41, 508–522.en
dcterms.referencesSánchez, J.A.; Lasker, H.R. Patterns of morphological integration in marine modular organisms: Supra-module organization in branching octocoral colonies. R. Soc. 2003, 270, 2039–2044. [CrossRef] [PubMed]en
dcterms.referencesSangster, T.; Major, H.; Plumb, R.; Wilson, A.; Wilson, I. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 2006, 131, 1075. [CrossRef]en
dcterms.referencesGodzien, J.; Alonso-Herranz, V.; Barbas, C.; Armitage, E.G. Controlling the quality of metabolomics data: New strategies to get the best out of the QC sample. Metabolomics 2015, 11, 518–528. [CrossRef]en
dcterms.referencesDunn, W.; Broadhurst, D.; Edison, A.; Guillou, C.; Viant, M.; Bearden, D.; Beger, R. Quality assurance and quality control processes: Summary of a metabolomics community questionnaire. Metabolomics 2017, 13, 6. [CrossRef]en
dcterms.referencesGorrochategui, E.; Jaumot, J.; Lacorte, S.; Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 2016, 82, 425–442. [CrossRef]en
dcterms.referencesBrown, M.; Dunn, W.B.; Dobson, P.; Patel, Y.; Winder, C.L.; Francis-McIntyre, S.; Begley, P.; Carroll, K.; Broadhurst, D.; Tseng, A.; et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst 2009, 134, 1322. [CrossRef]en
dcterms.referencesGromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant análisis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [CrossRef]en
dcterms.referencesIwagawa, T.; Hashimoto, K.; Yokogawa, Y.; Okamura, H.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. Cytotoxic biscembranes from the soft coral Sarcophyton glaucum. J. Nat. Prod. 2009, 72, 946–949. [CrossRef] [PubMed]en
dcterms.referencesMosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [CrossRef]en
dcterms.referencesDenizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 1986, 89, 271–277. [CrossRef]en
dcterms.referencesAl-Ghamdi, S.S. Time and dose dependent study of doxorubicin induced DU-145 cytotoxicity. Drug Metab. Lett. 2008, 2, 47–50. [CrossRef] [PubMed]en
dcterms.referencesShaikh, K.S.; Pawar, A.; Aphale, S.R.; Moghe, A.S. Effect of vesicular encapsulation on in-vitro cytotoxicity of ciclopirox olamine. Int. J. Drug Deliv. 2012, 4, 139–146. [CrossRef]en
dcterms.referencesBlunt, J.; Copp, B.; Keyzers, R.; Munro, M.; Prinsep, M. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [CrossRef] [PubMed]eng
dcterms.referencesDyshlovoy, S.; Honecker, F. Marine Compounds and Cancer: 2017 Updates. Mar. Drugs 2018, 16, 41. [CrossRef] [PubMed]eng
dcterms.referencesRuiz Torres, V.; Encinar, J.A.; Herranz López, M.; Pérez Sánchez, A.; Galiano, V.; Barrajón Catalán, E.; Micol, V. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 2017, 22, 1037. [CrossRef] [PubMed]eng
dcterms.referencesBennett, D. Growing Pains for Metabolomics. Scientist 2005, 19, 25–28. [CrossRef]eng
dcterms.referencesOjima, I.; Chakravarty, S.; Inoue, T.; Lin, S.; He, L.; Horwitz, S.B.; Kuduk, S.D.; Danishefsky, S.J. A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc. Natl. Acad. Sci. USA 1999, 96, 4256–4261. [CrossRef] [PubMed]eng
dcterms.referencesCorrea, H.; Valenzuela, A.L.; Ospina, L.F.; Duque, C. Anti-inflammatory effects of the gorgonian Pseudopterogorgia elisabethae collected at the Islands of Providencia and San Andrés (SW Caribbean). J. Inflamm. 2009, 6, 5. [CrossRef] [PubMed]eng
dcterms.referencesCorrea, H.; Aristizabal, F.; Duque, C.; Kerr, R. Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar. Drugs 2011, 9, 334–343. [CrossRef] [PubMed]eng
dcterms.referencesMarrero, J.; Rodríguez, A.D.; Baran, P.; Raptis, R.G. Ciereszkolide: Isolation and structure characterization of a novel rearranged cembrane from the caribbean sea plume Pseudopterogorgia kallos. Eur. J. Org. Chem. 2004, 3909–3912. [CrossRef]eng
dcterms.referencesLook, S.A.; Fenical, W.; Jacobst, R.S.; Clardyt, J.O.N. The pseudopterosins: Anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc. Natl. Acad. Sci. USA 1986, 83, 6238–6240. [CrossRef] [PubMed]eng
dcterms.referencesDeng, L.; Gu, H.; Zhu, J.; Nagana Gowda, G.A.; Djukovic, D.; Chiorean, E.G.; Raftery, D. Combining NMR and LC/MS using backward variable elimination: Metabolomics analysis of colorectal cancer, polyps, and healthy controls. Anal. Chem. 2016, 88, 7975–7983. [CrossRef] [PubMed]eng
dcterms.referencesLindon, J.C.; Holmes, E.; Bollard, M.E.; Stanley, E.G.; Nicholson, J.K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004, 9, 1–31. [CrossRef] [PubMed]eng
dcterms.referencesTistaert, C.; Chataigné, G.; Dejaegher, B.; Rivière, C.; Hoai, N.N.; Van, M.C.; Quetin-leclercq, J.; Heyden, Y. Vander Multivariate data analysis to evaluate the fingerprint peaks responsible for the cytotoxic activity of Mallotus species. J. Chromatogr. B 2012, 910, 103–113. [CrossRef] [PubMed]eng
dcterms.referencesLeal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of marine invertebrates for new natural products—A chemical and zoogeographical perspective. Molecules 2012, 17, 9842–9854. [CrossRef] [PubMed]eng
dcterms.referencesWei, X.; Rodríguez, A.D.; Baran, P.; Raptis, R.G. Dolabellane-type diterpenoids with antiprotozoan activity from a southwestern Caribbean gorgonian octocoral of the genus Eunicea. J. Nat. Prod. 2010, 73, 925–934. [CrossRef] [PubMed]eng
dcterms.referencesMaille, G.; Qin, C.; Siuzdak, G. Nonlinear Data Alignment for UPLC—MS and HPLC—MS Based Metabolomics: Quantitative Analysis of Endogenous and Exogenous Metabolites in Human Serum. Anal. Chem. 2006, 78, 3289–3295. [CrossRef]eng
dcterms.referencesSzymanska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 14. [CrossRef] [PubMed]eng
dcterms.referencesRantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemiometr. 2006, 20, 341–351. [CrossRef]eng
dcterms.referencesGoecks, J.; Nekrutenko, A.; Taylor, J.; Afgan, E.; Ananda, G.; Baker, D.; Blankenberg, D.; Chakrabarty, R.; Coraor, N.; Goecks, J.; et al. Galaxy: A comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol. 2010, 11, 13. [CrossRef]eng
dcterms.referencesHaug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; De Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013, 41, 781–786. [CrossRef]eng
dcterms.referencesHostettman, K. Methods in Plant Biochemistry. Assays for Bioactivity; Academic Press: London, UK, 1991.eng
dcterms.referencesXia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, 652–660. [CrossRef] [PubMed]eng
dcterms.referencesMoltu, S.J.; Sachse, D.; Blakstad, E.W.; Strømmen, K.; Nakstad, B.; Almaas, A.N.; Westerberg, A.C.; Rønnestad, A.; Brække, K.; Veierød, M.B.; et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients 2014, 6, 1913–1930. [CrossRef] [PubMed]eng
dcterms.referencesChiu, C.Y.; Yeh, K.W.; Lin, G.; Chiang, M.H.; Yang, S.C.; Chao, W.J.; Yao, T.C.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; et al. Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE 2016, 11, e0149823. [CrossRef] [PubMed]eng
dcterms.referencesXia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef] [PubMed]eng
dcterms.referencesHubert, J.; Nuzillard, J.M.; Renault, J.H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [CrossRef]eng
dcterms.referencesNational Center for Biotechnology Information Eduenone. Available online: https://pubchem.ncbi.nlm.nih. gov/compound/10424127 (accessed on 25 September 2018).eng
dcterms.referencesNational Center for Biotechnology Information Dolabellatrienone. Available online: https://pubchem.ncbi. nlm.nih.gov/compound/10469260 (accessed on 25 September 2018).eng
dcterms.referencesWolf, S.; Schmidt, S.; Müller Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 1, 43. [CrossRef]eng
dcterms.referencesLook, S.A.; Fenical, W. New Bicyclic Diterpenoids from the Caribbean Gorgonian Octocoral Eunicea calyculata. J. Org. Chem. 1982, 47, 4129–4134. [CrossRef]eng
dcterms.referencesPatel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-Vitro cytotoxicity activity of Solanum Nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci. 2009, 1, 38–47.eng
dcterms.referencesGao, Y.; Xiao, W.; Liu, H.C.; Wang, J.R.; Yao, L.G.; Ouyang, P.K.; Wang, D.C.; Guo, Y.W. Clavirolide G, a new rare dolabellane-type diterpenoid from the Xisha soft coral Clavularia viridis. Chin. Chem. Lett. 2017, 28, 905–908. [CrossRef]eng
dcterms.referencesShen, Y.C.; Pan, Y.L.; Ko, C.L.; Kuo, Y.H.; Chen, C.Y. New dolabellanes from the Taiwanese soft coral clavularia inflata. J. Chin. Chem. Soc. 2003, 50, 471–476. [CrossRef]eng
dcterms.referencesChang, K.C.; Duh, C.Y.; Chen, I.S.; Tsai, I.L. A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative formosan Casearia membranacea. Planta Med. 2003, 69, 667–672. [CrossRef] [PubMed]eng
dcterms.referencesDuh, C.Y.; Chia, M.C.; Wang, S.K.; Chen, H.J.; El-Gamal, A.A.H.; Dai, C.F. Cytotoxic dolabellane diterpenes from the Formosan soft coral Clavularia inflata. J. Nat. Prod. 2001, 64, 1028–1031. [CrossRef] [PubMed]eng
dcterms.referencesFrederickm, M. Bayer the Shallow-Water Octocorallia of the West Indian Region: A Manual for Marine Biologists; Smithsonian Institution: Washington, DC, USA, 1988.eng
dcterms.referencesSánchez, J.A.; Wirshing, H.H. A field key to the identification of tropical western Atlantic zooxanthellate octocorals (Octocorallia: Cnidaria). Caribb. J. Sci. 2005, 41, 508–522.eng
dcterms.referencesSánchez, J.A.; Lasker, H.R. Patterns of morphological integration in marine modular organisms: Supra-module organization in branching octocoral colonies. R. Soc. 2003, 270, 2039–2044. [CrossRef] [PubMed]eng
dcterms.referencesSangster, T.; Major, H.; Plumb, R.; Wilson, A.; Wilson, I. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 2006, 131, 1075. [CrossRef]eng
dcterms.referencesGodzien, J.; Alonso-Herranz, V.; Barbas, C.; Armitage, E.G. Controlling the quality of metabolomics data: New strategies to get the best out of the QC sample. Metabolomics 2015, 11, 518–528. [CrossRef]eng
dcterms.referencesDunn, W.; Broadhurst, D.; Edison, A.; Guillou, C.; Viant, M.; Bearden, D.; Beger, R. Quality assurance and quality control processes: Summary of a metabolomics community questionnaire. Metabolomics 2017, 13, 6. [CrossRef]eng
dcterms.referencesGorrochategui, E.; Jaumot, J.; Lacorte, S.; Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 2016, 82, 425–442. [CrossRef]eng
dcterms.referencesBrown, M.; Dunn, W.B.; Dobson, P.; Patel, Y.; Winder, C.L.; Francis-McIntyre, S.; Begley, P.; Carroll, K.; Broadhurst, D.; Tseng, A.; et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst 2009, 134, 1322. [CrossRef]eng
dcterms.referencesGromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant análisis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [CrossRef]eng
dcterms.referencesIwagawa, T.; Hashimoto, K.; Yokogawa, Y.; Okamura, H.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. Cytotoxic biscembranes from the soft coral Sarcophyton glaucum. J. Nat. Prod. 2009, 72, 946–949. [CrossRef] [PubMed]eng
dcterms.referencesMosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [CrossRef]eng
dcterms.referencesDenizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 1986, 89, 271–277. [CrossRef]eng
dcterms.referencesAl-Ghamdi, S.S. Time and dose dependent study of doxorubicin induced DU-145 cytotoxicity. Drug Metab. Lett. 2008, 2, 47–50. [CrossRef] [PubMed]eng
dcterms.referencesShaikh, K.S.; Pawar, A.; Aphale, S.R.; Moghe, A.S. Effect of vesicular encapsulation on in-vitro cytotoxicity of ciclopirox olamine. Int. J. Drug Deliv. 2012, 4, 139–146. [CrossRef]eng
dcterms.referencesJiménez, J.; Marfil, A.; Francesch, C.; Cuevas, M.; Alvarez, A.; Albericio, F. Productos naturales de origen marino. Investig. Cienc. 2007, 365, 75–83.es_CO
dcterms.referencesCorrea, H. Estudios de Bioprospección del coral blando Pseudopterogorgia Elisabethae como Fuente de Sustancias con Actividad Biológica Fase IV. Ph.D. Thesis, National University of Colombia, Bogotá, Colombia, 2012.es_CO
dcterms.referencesSánchez, J.A. Sistemática Filogenética del Género Eunicea Lamouroux, 1816 (Octocorallia: Gorgonacea: Plexauridae) con Aspectos Sobre la Historia Natural de Algunas Especies en el Caribe Colombiano. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 1998.es_CO
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International