dc.contributor.advisor | Rey, Federico | |
dc.contributor.advisor | Acosta González, Luis Alejandro | |
dc.contributor.author | Rodríguez Castano, Gina Paola del Carmen | |
dc.date.accessioned | 5/14/2020 11:40 | |
dc.date.available | 5/14/2020 11:40 | |
dc.date.issued | 2020-03-13 | |
dc.identifier.uri | http://hdl.handle.net/10818/41023 | |
dc.description | 135 páginas | es_CO |
dc.description.abstract | Flavonoids are secondary metabolites of plants which have anti-cancer, anti-inflammatory, and antioxidant properties. However, the intestinal microbiota can change the bioactivity and bioavailability of these compounds, which may trigger different levels of response to a treatment. In order to expand our understanding of the capacity of the gut microbiota to modify these therapeutic compounds, we explored the microbial degradation of quercetin, one the most abundant flavonoids in the human diet. First, we revealed that a non-quercetin degrader (Bacteroides thetaiotaomicron) can provide, via crossfeeding, substrates to a quercetin-degrader (Eubacterium ramulus) for the cometabolization of the flavonoid. Second, through a metataxonomic analysis of fecal communities exposed to the flavonoid, we detected two variants related to the quercetin degrader, Flavonifractor plautii, that presented a negative correlation in their relative abundances upon incubation with quercetin. Lastly, a bioinformatic analysis of the genome of the closest relatives of these variantsshowed that they are discordant for the catabolism of an important substrate in the gastrointestinal tract, ethanolamine, which it is formed from bacterial and intestinal cell membranes and is abundant even in the absence of dietary compounds due to the constant washing away of these cells in the intestinal mucus. Overall, these observations indicate that flavonoid-degrading bacteria can be differentially affected by dietary and host’s substrates and interactions with different microbial species. Thus, the community structure and metabolic capacity of each individual’s gut microbiota may impact the health-related effects of these compounds. | en |
dc.format | application/pdf | es_CO |
dc.language.iso | eng | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Flavonoides | es_CO |
dc.subject | Metabolitos microbianos | es_CO |
dc.subject | Microbioma gastrointestinal | es_CO |
dc.subject | Membranas plasmáticas | es_CO |
dc.title | Study on the interaction between diet, quercetin and intestinal microbiota | en |
dc.type | doctoral thesis | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | A. Drewnowski and B. M. Popkin, “The Nutrition Transition: New Trends in the Global Diet,” Nutr. Rev., vol.
55, no. 2, pp. 31–43, 1997. | en |
dcterms.references | F. B. Hu et al., “Reproducibility and validity of dietary patterns assessed with a food-frequency
questionnaire,” Am. J. Clin. Nutr., vol. 69, no. 2, pp. 243–249, 1999. | en |
dcterms.references | M. L. Slattery, K. M. Boucher, B. J. Caan, J. D. Potter, and K. N. Ma, “Eating patterns and risk of colon cancer.,”
Am. J. Epidemiol., vol. 148, no. 1, pp. 4–16, 1998. | en |
dcterms.references | A. Nanri et al., “Reproducibility and validity of dietary patterns assessed by a food frequency questionnaire
used in the 5-year follow-up survey of the Japan Public Health Center-Based Prospective Study,” J.
Epidemiol., vol. 22, no. 3, pp. 205–215, 2012 | en |
dcterms.references | L. Cordain et al., “Origins and evolution of the Western diet: health implications for the 21st century.,” Am.
J. Clin. Nutr., vol. 81, no. 2, pp. 341–54, 2005. | en |
dcterms.references | W. Price, “Nutrition and Physical Degeneration,” Can. Med. Assoc. J., vol. 42, no. 2, p. 208, 1939. | en |
dcterms.references | S. Parry and L. Straker, “The contribution of office work to sedentary behaviour associated risk,” BMC Public Health, vol. 13, no. 1, pp. 1–10, 2013. | en |
dcterms.references | CDC, “Vital signs: binge drinking prevalence, frequency, and intensity among adults - United States, 2010.,”
2012. | en |
dcterms.references | WHO, “Global status report on noncommunicable diseases 2014,” World Health, p. 176, 2014. | en |
dcterms.references | S. Kanoski and T. Davidson, “Western diet consumption and cognitive impairment: links to hippocampal
dysfunction and obesity,” Physiol. Behav., vol. 103, no. 1, pp. 59–68, 2011. | en |
dcterms.references | L. Bazzano, “Dietary intake of fruit and vegetables and risk of diabetes mellitus and cardiovascular diseases,”
Geneva WHO, 2005. | en |
dcterms.references | F. M. Trovato, D. Catalano, G. F. Martines, P. Pace, and G. M. Trovato, “Mediterranean diet and non-alcoholic
fatty liver disease. The need of extended and comprehensive interventions,” Clin. Nutr., vol. 34, no. 1, pp.
86–88, 2015. | en |
dcterms.references | J. M. Geleijnse, F. J. Kok, and D. E. Grobbee, “Impact of dietary and lifestyle factors on the prevalence of
hypertension in Western populations,” Eur. J. Public Health, vol. 14, no. 3, pp. 235–239, 2004. | en |
dcterms.references | S. Jehle, A. Zanetti, J. Muser, H. N. Hulter, and R. Krapf, “Partial neutralization of the acidogenic Western diet
with potassium citrate increases bone mass in postmenopausal women with osteopenia.,” J. Am. Soc.
Nephrol., vol. 17, no. 11, pp. 3213–3222, 2006. | en |
dcterms.references | A. Manzel, D. N. Muller, D. A. Hafler, S. E. Erdman, R. A. Linker, and M. Kleinewietfeld, “Role of ‘western diet’
in inflammatory autoimmune diseases,” Curr. Allergy Asthma Rep., vol. 14, no. 1, pp. 1–8, 2014. | en |
dcterms.references | H. Adlercreutz, “Western diet and Western diseases: Some hormonal and biochemical mechanisms and
associations,” Scand. J. Clin. Lab. Invest. Suppl., vol. 50, no. sup201, pp. 3–23, 1990. | en |
dcterms.references | J. Lederberg and A. McCray, “Ome SweetOmics--A Genealogical Treasury of Words,” Sci., vol. 15, no. 7, p. 8,
2001. | en |
dcterms.references | C. Huttenhower et al., “Structure, function and diversity of the healthy human microbiome,” Nature, vol.
486, no. 7402, pp. 207–214, 2012. | en |
dcterms.references | P. B. Eckburg et al., “Diversity of the human intestinal microbial flora.,” Science, vol. 308, no. 5728, pp. 1635–
8, 2005 | en |
dcterms.references | J. Qin, R. Li, J. Raes, and M. Arumugam, “A human gut microbial gene catalogue established by metagenomic
sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010. | en |
dcterms.references | M. Frémont, D. Coomans, S. Massart, and K. De Meirleir, “High-throughput 16S rRNA gene sequencing
reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients,”
Anaerobe, vol. 22, pp. 50–56, 2013. | en |
dcterms.references | X. Zhang et al., “The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized
after treatment.,” Nat. Med., vol. 21, no. 8, pp. 895–905, 2015. | en |
dcterms.references | C. T. Brown et al., “Gut microbiome metagenomics analysis suggests a functional model for the development
of autoimmunity for type 1 diabetes,” PLoS One, vol. 6, no. 10, 2011. | en |
dcterms.references | N. Larsen et al., “Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults,” PLoS One, vol. 5, no. 2, 2010. | en |
dcterms.references | K. Forslund et al., “Disentangling type 2 diabetes and metformin treatment signatures in the human gut
microbiota.,” Nature, vol. 528, no. 7581, pp. 262–266, 2015. | en |
dcterms.references | M. Joossens et al., “Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected
relatives,” Gut, vol. 60, no. 5, pp. 631–637, 2011. | en |
dcterms.references | A. R. Erickson et al., “Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota
Signatures of Crohn’s Disease,” PLoS One, vol. 7, no. 11, 2012. | en |
dcterms.references | I. A. Finnie, A. D. Dwarakanath, B. A. Taylor, and J. M. Rhodes, “Colonic mucin synthesis is increased by
sodium butyrate.,” Gut, vol. 36, no. 1, pp. 93–9, 1995. | en |
dcterms.references | L. Peng, Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin, “Butyrate enhances the intestinal barrier by facilitating
tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.,” J. Nutr.,
vol. 139, no. 9, pp. 1619–1625, 2009. | en |
dcterms.references | M. A. R. Vinolo, H. G. Rodrigues, R. T. Nachbar, and R. Curi, “Regulation of Inflammation by Short Chain Fatty
Acids,” Nutrients, vol. 3, no. 12, pp. 858–876, 2011. | en |
dcterms.references | P. Louis, P. Young, G. Holtrop, and H. J. Flint, “Diversity of human colonic butyrate-producing bacteria
revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene,” Environ. Microbiol., vol. 12, no. 2, pp.
304–314, 2010. | en |
dcterms.references | M. J. Hopkins, R. Sharp, and G. T. Macfarlane, “Age and disease related changes in intestinal bacterial
populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles.,” Gut,
vol. 48, no. 2, pp. 198–205, 2001. | en |
dcterms.references | P. J. Turnbaugh et al., “A core gut microbiome in obese and lean twins.,” Nature, vol. 457, no. 7228, pp. 480–
484, 2009. | en |
dcterms.references | L. C. Kong et al., “Gut microbiota after gastric bypass in human obesity: Increased richness and associations
of bacterial genera with adipose tissue genes,” Am. J. Clin. Nutr., vol. 98, no. 1, pp. 16–24, 2013. | en |
dcterms.references | C. de Weerth, S. Fuentes, P. Puylaert, and W. M. de Vos, “Intestinal microbiota of infants with colic:
development and specific signatures.,” Pediatrics, vol. 131, no. 2, pp. e550-8, 2013. | en |
dcterms.references | ] T. Yatsunenko et al., “Human gut microbiome viewed across age and geography,” Nature, vol. 486, no. 7402,
pp. 222–227, 2012. | en |
dcterms.references | C. A. Lozupone, M. E. Rhodes, C. P. Neff, A. P. Fontenot, T. B. Campbell, and B. E. Palmer, “HIV-induced
alteration in gut microbiota,” Gut Microbes, vol. 5, no. 4, pp. 562–570, 2014 | en |
dcterms.references | W. H. W. Tang et al., “Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.,” N.
Engl. J. Med., vol. 368, no. 17, pp. 1575–84, 2013. | en |
dcterms.references | R. a Koeth et al., “Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes
atherosclerosis,” Nat. Med., vol. 19, no. April, pp. 576–85, 2013. | en |
dcterms.references | T. Poutahidis et al., “Microbial Reprogramming Inhibits Western Diet-Associated Obesity,” PLoS One, vol. 8,
no. 7, p. e68596, 2013. | en |
dcterms.references | F. Armougom, M. Henry, B. Vialettes, D. Raccah, and D. Raoult, “Monitoring bacterial community of human
gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients,”
PLoS One, vol. 4, no. 9, p. e7125, 2009. | en |
dcterms.references | M. Million et al., “Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in
Bifidobacterium animalis and Methanobrevibacter smithii.,” Int. J. Obes. (Lond)., vol. 36, no. 6, pp. 817–25,
2012. | en |
dcterms.references | F. Fåk and F. Bäckhed, “Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a
strain dependent fashion in Apoe−/− mice,” PLoS One, vol. 7, no. 10, p. e46837, 2012. | en |
dcterms.references | M. P. Diaz-Ropero et al., “Two Lactobacillus strains, isolated from breast milk, differently modulate the
immune response,” J. Appl. Microbiol., vol. 102, no. 2, pp. 337–343, 2007. | en |
dcterms.references | B. T. Burton and W. R. Foster, “Health implications of obesity: an NIH Consensus Development Conference,”
J. Am. Diet. Assoc., vol. 85, no. 9, pp. 1117–1121, 1985 | en |
dcterms.references | C. Ogden, S. Yanovski, M. Carroll, and K. Flegal, “The epidemiology of obesity,” Gastroenterology, vol. 132,
no. 6, pp. 2087–2102, 2007. | en |
dcterms.references | J. V Van Vliet-Ostaptchouk et al., “The prevalence of Metabolic Syndrome and metabolically healthy obesity
in Europe: a collaborative analysis of ten large cohort studies.,” BMC Endocr. Disord., vol. 14, no. 9, pp. 1–
13, 2014. | en |
dcterms.references | N. Klöting et al., “Insulin-sensitive obesity,” Am. J. Physiol. - Endocrinol. Metab., vol. 299, no. 3, pp. 506–515,
2010. | en |
dcterms.references | J. Naukkarinen et al., “Characterising metabolically healthy obesity in weight-discordant monozygotic twins,”
Diabetologia, vol. 57, no. 1, pp. 167–176, 2014. | en |
dcterms.references | K. Azuma et al., “Higher liver fat content among Japanese in Japan compared with non-Hispanic whites in
the United States,” Metabolism., vol. 58, no. 8, pp. 1200–1207, 2009. | en |
dcterms.references | R. W. Walker et al., “High rates of fructose malabsorption are associated with reduced liver fat in obese
African Americans.,” J. Am. Coll. Nutr., vol. 31, no. 5, pp. 369–74, 2012 | en |
dcterms.references | R. Guerrero, G. L. Vega, S. M. Grundy, and J. D. Browning, “Ethnic differences in hepatic steatosis: An insulin
resistance paradox?,” Hepatology, vol. 49, no. 3, pp. 791–801, 2009. | en |
dcterms.references | M. G. Marmot, S. L. Syme, A. Kagan, H. Kato, J. B. Cohen, and J. Belsky, “Epidemiologic studies of coronary
heart disease and stroke in Japanese men living in Japan, Hawaii and California: prevalence of coronary and
hypertensive heart disease and associated risk factors.,” Am. J. Epidemiol., vol. 102, no. 6, pp. 514–25, 1975. | en |
dcterms.references | C. B. Newgard, “Interplay between lipids and branched-chain amino acids in development of insulin
resistance,” Cell Metabolism, vol. 15, no. 5. pp. 606–614, 2012. | en |
dcterms.references | M. Raman et al., “Fecal microbiome and volatile organic compound metabolome in obese humans with
nonalcoholic fatty liver disease,” Clin. Gastroenterol. Hepatol., vol. 11, no. 7, pp. 868–875, 2013. | en |
dcterms.references | L. Zhu et al., “Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A
connection between endogenous alcohol and NASH,” Hepatology, vol. 57, no. 2, pp. 601–609, 2013. | en |
dcterms.references | J. Boursier and A. M. Diehl, “Nonalcoholic Fatty Liver Disease and the Gut Microbiome,” Clinics in Liver Disease, vol. 20, no. 2. pp. 263–275, 2016. | en |
dcterms.references | F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, “Mechanisms underlying the resistance to
diet-induced obesity in germ-free mice,” Proc. Natl. Acad. Sci., vol. 104, no. 3, pp. 979–984, 2007. | en |
dcterms.references | A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise.,” J. Appl. Physiol., vol. 98,
no. 4, pp. 1154–1162, 2005. | en |
dcterms.references | J. M. Wells, O. Rossi, M. Meijerink, and P. van Baarlen, “Epithelial crosstalk at the microbiota-mucosal
interface.,” Proc. Natl. Acad. Sci. U. S. A., vol. 108 Suppl, pp. 4607–4614, 2011. | en |
dcterms.references | G. G. Muccioli et al., “The endocannabinoid system links gut microbiota to adipogenesis.,” Mol. Syst. Biol.,
vol. 6, no. 392, p. 392, 2010. | en |
dcterms.references | H. Nakarai et al., “Adipocyte-macrophage interaction may mediate LPS-induced low-grade inflammation:
potential link with metabolic complications.,” Innate Immun., vol. 18, no. 1, pp. 164–70, 2012. | en |
dcterms.references | F. S. Lira et al., “Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly
trained subjects.,” Lipids Health Dis., vol. 9, no. 1, p. 82, 2010. | en |
dcterms.references | E. Pace et al., “Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated
responses in airway epithelial cells,” Immunology, vol. 124, no. 3, pp. 401–411, 2008 | en |
dcterms.references | M. Lyte and S. Ernst, “Catecholamine induced growth of gram negative bacteria,” Life Sci., vol. 50, no. 3, pp.
203–212, 1992. | en |
dcterms.references | P. P. E. Freestone, S. M. Sandrini, R. D. Haigh, and M. Lyte, “Microbial endocrinology: how stress influences
susceptibility to infection,” Trends in Microbiology, vol. 16, no. 2. pp. 55–64, 2008 | en |
dcterms.references | M. Lyte and M. T. Bailey, “Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma.,”
J. Surg. Res., vol. 70, no. 2, pp. 195–201, 1997. | en |
dcterms.references | M. Lyte, C. D. Frank, and B. T. Green, “Production of an autoinducer of growth by norepinephrine cultured
Escherichia coli O157:H7,” FEMS Microbiol. Lett., vol. 139, no. 2–3, pp. 155–159, 1996. | en |
dcterms.references | P. D. Cani et al., “Metabolic endotoxemia initiates obesity and insulin resistance,” Diabetes, vol. 56, no. 7,
pp. 1761–1772, 2007. | en |
dcterms.references | S. Ghoshal, J. Witta, J. Zhong, W. de Villiers, and E. Eckhardt, “Chylomicrons promote intestinal absorption
of lipopolysaccharides.,” J. Lipid Res., vol. 50, no. 1, pp. 90–97, 2009. | en |
dcterms.references | S. Sadeghi, F. A. Wallace, and P. C. Calder, “Dietary lipids modify the cytokine response to bacterial
lipopolysaccharide in mice,” Immunology, vol. 96, no. 3, pp. 404–410, 1999. | en |
dcterms.references | E. Mascioli, L. Leader, E. Flores, S. Trimbo, B. Bistrian, and G. Blackburn, “Enhanced survival to endotoxin in
guinea pigs fed IV fish oil emulsion,” Lipids, vol. 23, no. 6, pp. 623–625, 1988. | en |
dcterms.references | B. Di Luccia et al., “Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation
in a rat model of obesity,” PLoS One, vol. 10, no. 8, p. e0134893, 2015 | en |
dcterms.references | I. Bergheim et al., “Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of
endotoxin,” J. Hepatol., vol. 48, no. 6, pp. 983–992, 2008 | en |
dcterms.references | X. Ouyang et al., “Fructose consumption as a risk factor for non-alcoholic fatty liver disease,” J. Hepatol., vol.
48, no. 6, pp. 993–999, 2008. | en |
dcterms.references | A. Salonen and W. M. de Vos, “Impact of diet on human intestinal microbiota and health.,” Annu. Rev. Food
Sci. Technol., vol. 5, pp. 239–62, 2014. | en |
dcterms.references | H. Flint, K. Scott, P. Louis, and S. Duncan, “The role of the gut microbiota in nutrition and health,” Nat. Rev.
Gastroenterol. Hepatol., vol. 9, no. 10, pp. 577–589, 2012. | en |
dcterms.references | B. Ling, F. Peng, J. Alcorn, K. Lohmann, B. Bandy, and G. a Zello, “D-Lactate altered mitochondrial energy
production in rat brain and heart but not liver,” Nutr. Metab. (Lond)., vol. 9, no. 1, p. 6, 2012. | en |
dcterms.references | J. B. Ewaschuk, J. M. Naylor, and G. a Zello, “D-lactate in human and ruminant metabolism.,” J. Nutr., vol.
135, no. 7, pp. 1619–1625, 2005. | en |
dcterms.references | J. R. Sheedy et al., “Increased D-lactic acid intestinal bacteria in patients with chronic fatigue syndrome,” In
Vivo (Brooklyn)., vol. 23, no. 4, pp. 621–628, 2009. | en |
dcterms.references | J. Uribarri, M. S. Oh, and H. J. Carroll, “D-lactic acidosis. A review of clinical presentation, biochemical
features, and pathophysiologic mechanisms.,” Medicine (Baltimore)., vol. 77, no. 2, pp. 73–82, 1998. | en |
dcterms.references | K. J. Atkinson and R. K. Rao, “Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption
of epithelial tight junctions.,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 280, no. 6, pp. G1280–G1288,
2001. | en |
dcterms.references | M. Salaspuro, “Bacteriocolonic pathway for ethanol oxidation: characteristics and implications,” Ann Med,
vol. 28, no. 3, pp. 195–200, 1996. | en |
dcterms.references | R. M. Wright, J. L. McManaman, and J. E. Repine, “Alcohol-induced breast cancer: A proposed mechanism,”
Free Radic. Biol. Med., vol. 26, no. 3–4, pp. 348–354, 1999. | en |
dcterms.references | G. den Besten, K. van Eunen, A. Groen, K. Venema, D. Reijngoud, and B. Bakker, “The role of short-chain fatty
acids in the interplay between diet, gut microbiota, and host energy metabolism,” J. Lipid Res., vol. 54, no.
9, pp. 2325–2340, 2013. | en |
dcterms.references | R. Hughes, E. a Magee, and S. Bingham, “Protein degradation in the large intestine: relevance to colorectal
cancer.,” Curr. Issues Intest. Microbiol., vol. 1, no. 2, pp. 51–58, 2000. | en |
dcterms.references | W. R. Russell et al., “High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely
to be detrimental to colonic health,” Am. J. Clin. Nutr., vol. 93, no. 5, pp. 1062–1072, 2011. | en |
dcterms.references | R. Koeth, Z. Wang, B. Levison, and J. Buffa, “Intestinal microbiota metabolism of L-carnitine, a nutrient in red
meat, promotes atherosclerosis,” Nat. Med., vol. 19, no. 5, pp. 576–585, 2013. | en |
dcterms.references | S. Bengmark, “Bio-ecological control of chronic liver disease and encephalopathy,” Metabolic Brain Disease,
vol. 24, no. 1. pp. 223–236, 2009. | en |
dcterms.references | R. Wade and C. Castro, “Redox reactivity of iron (III) porphyrins and heme proteins with nitric oxide. Nitrosyl
transfer to carbon, oxygen, nitrogen and sulfur,” Chem. Res. Toxicol., vol. 3, no. 4, pp. 289–291, 1990 | en |
dcterms.references | G. R. Gibson, J. H. Cummings, and G. T. Macfarlane, “Growth and activities of sulphate-reducing bacteria in
gut contents of healthy subjects and patients with ulcerative colitis,” FEMS Microbiol. Lett., vol. 86, no. 2,
pp. 103–111, 1991. | en |
dcterms.references | M. S. Attene-Ramos, E. D. Wagner, M. J. Plewa, and H. R. Gaskins, “Evidence that hydrogen sulfide is a
genotoxic agent,” Mol Cancer Res, vol. 4, no. 1, pp. 9–14, 2006. | en |
dcterms.references | R. J. Bloomer and K. H. Fisher-Wellman, “Lower postprandial oxidative stress in women compared with men,”
Gend. Med., vol. 7, no. 4, pp. 340–349, 2010. | en |
dcterms.references | ] R. Caesar, F. Fåk, and F. Bäckhed, “Effects of gut microbiota on obesity and atherosclerosis via modulation
of inflammation and lipid metabolism: Review,” J. Intern. Med., vol. 268, no. 4, pp. 320–328, 2010 | en |
dcterms.references | H. van der Vaart, D. S. Postma, W. Timens, and N. H. T. ten Hacken, “Acute effects of cigarette smoke on
inflammation and oxidative stress: a review.,” Thorax, vol. 59, no. 8, pp. 713–721, 2004. | en |
dcterms.references | X. Zhang, G. Zhang, H. Zhang, M. Karin, H. Bai, and D. Cai, “Hypothalamic IKKa/NF-kB and ER Stress Link
Overnutrition to Energy Imbalance and Obesity,” Cell, vol. 135, no. 1, pp. 61–73, 2008. | en |
dcterms.references | P. Sheth, S. Basuroy, C. Li, A. P. Naren, and R. K. Rao, “Role of phosphatidylinositol 3-kinase in oxidative
stress-induced disruption of tight junctions.,” J. Biol. Chem., vol. 278, no. 49, pp. 49239–49245, 2003. | en |
dcterms.references | M. Maes and J. Leunis, “Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a
clinical improvement: effects of age, duration of illness and the translocation,” Neuroendocrinol. Lett., vol.
29, no. 6, p. 902, 2008. | en |
dcterms.references | M. L. Jones, C. J. Martoni, J. G. Ganopolsky, A. Labbé, and S. Prakash, “The human microbiome and bile acid
metabolism: dysbiosis, dysmetabolism, disease and intervention.,” Expert Opin. Biol. Ther., vol. 14, no. 4, pp.
467–82, 2014. | en |
dcterms.references | L. Furuya-Kanamori et al., “Comorbidities, Exposure to Medications, and the Risk of Community-Acquired
Clostridium difficile Infection: A Systematic Review and Meta-analysis,” Infect. Control Hosp. Epidemiol., vol.
36, no. 02, pp. 132–141, 2014. | en |
dcterms.references | R. Ungaro et al., “Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative
colitis: a meta-analysis.,” Am. J. Gastroenterol., vol. 109, no. 11, pp. 1728–38, 2014. | en |
dcterms.references | L. M. Cox and M. J. Blaser, “Antibiotics in early life and obesity.,” Nat. Rev. Endocrinol., vol. 11, no. 3, pp.
182–90, 2015. | en |
dcterms.references | M. J. Blaser and S. Falkow, “What are the consequences of the disappearing human microbiota?,” Nat. Rev.
Microbiol., vol. 7, no. 12, pp. 887–894, 2009. | en |
dcterms.references | A. Moeller et al., “Cospeciation of gut microbiota with hominids,” Science (80-. )., vol. 353, no. 6297, pp.
380–382, 2016. | en |
dcterms.references | K. E. Nichol, W. W. Poon, A. I. Parachikova, D. H. Cribbs, C. G. Glabe, and C. W. Cotman, “Exercise alters the
immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive
performance and decreased amyloid.,” J. Neuroinflammation, vol. 5, no. 1, p. 13, 2008 | en |
dcterms.references | R. Starkie, S. R. Ostrowski, S. Jauffred, M. Febbraio, and B. K. Pedersen, “Exercise and IL-6 infusion inhibit
endotoxin-induced TNF-alpha production in humans.,” FASEB J., vol. 17, no. 8, pp. 884–886, 2003. | en |
dcterms.references | K. H. Schmitz, D. R. Jacobs, C.-P. Hong, J. Steinberger, a Moran, and a R. Sinaiko, “Association of physical
activity with insulin sensitivity in children.,” Int. J. Obes. Relat. Metab. Disord., vol. 26, no. 10, pp. 1310–1316,
2002. | en |
dcterms.references | M. Matsumoto et al., “Impact of intestinal microbiota on intestinal luminal metabolome,” Sci. Rep., vol. 2, p.
233, 2012. | en |
dcterms.references | R. Campos-Rodriguez, M. Godinez-Victoria, A. A. Arciniega-Martínez, I.M., Resendiz-Albor, H. Reyna-Garfias,
T. R. Cruz-Hernández, and M. E. Drago-Serrano, “Protective Effect of Moderate Exercise for BALB/c Mice with
Salmonella Typhimurium Infection.,” Int. J. Sports Med., vol. 37, no. 01, pp. 63–70, 2016. | en |
dcterms.references | H. Sies, W. Stahl, and A. Sevanian, “Nutritional, dietary and postprandial oxidative stress,” J. Nutr., vol. 135,
no. 5, pp. 969–972, 2005. | en |
dcterms.references | K. Wang, X. Jin, Y. Chen, Z. Song, and X. Jiang, “Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier
Function by Activating AMPK and ERK Signaling,” Nutrients, vol. 8, no. 5, p. 272, 2016 | en |
dcterms.references | T. Cowan, M. Palmnas, K. Ardell, and J. Yang, “Chronic coffee consumption alters gut microbiome: potential
mechanism to explain the protective effects of coffee on type 2 diabetes?,” FASEB J., vol. 27, no.
1_MeetingAbstracts, pp. 951–1, 2013. | en |
dcterms.references | F. F. Anhê et al., “A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance
and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota
of mice.,” Gut, vol. 64, no. 6, pp. 872–83, 2015. | en |
dcterms.references | H.-J. He, G.-Y. Wang, Y. Gao, W.-H. Ling, Z.-W. Yu, and T.-R. Jin, “Curcumin attenuates Nrf2 signaling defect,
oxidative stress in muscle and glucose intolerance in high fat diet-fed mice,” World J. Diabetes, vol. 3, no. 5,
p. 94, 2012. | en |
dcterms.references | S. Ghosh et al., “Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious
Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis,” PLoS One, vol. 8, no. 2, p. e55468, 2013 | en |
dcterms.references | D. Roopchand, R. Carmody, and P. Kuhn, “Dietary Polyphenols Promote Growth of the Gut Bacterium
Akkermansia muciniphila and Attenuate High-Fat Diet–Induced Metabolic Syndrome,” Diabetes, vol. 64, no.
8, pp. 2847–2858, 2015. | en |
dcterms.references | L. Thompson and R. C. Spiller, “Impact of polyunsaturated fatty acids on human colonic bacterial metabolism:
an in vitro and in vivo study.,” Br. J. Nutr., vol. 74, no. 5, pp. 733–41, 1995. | en |
dcterms.references | FAO/WHO, “Guidelines for the evaluation of probiotics in food,” London World Heal. Organ. ON, Canada
Food Agric. Organ., 2002. | en |
dcterms.references | S. Doron and S. L. Gorbach, “Probiotics: their role in the treatment and prevention of disease.,” Expert Rev.
Anti. Infect. Ther., vol. 4, no. 2, pp. 261–275, 2006. | en |
dcterms.references | D. Y. Park et al., “Supplementation of Lactobacillus curvatus KY1032 in Diet-Induced Obese Mice Is
Associated with Gut Microbial Changes and Reduction in Obesity,” PLoS One, vol. 8, no. 3, p. 59470, 2013. | en |
dcterms.references | D. Y. Park, Y. T. Ahn, C. S. Huh, R. A. Mcgregor, and M. S. Choi, “Dual probiotic strains suppress high fructoseinduced metabolic syndrome,” World J. Gastroenterol., vol. 19, no. 2, pp. 274–283, 2013. | en |
dcterms.references | A. Everard et al., “Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 22, pp. 9066–71, 2013. | en |
dcterms.references | P. G. Cano, A. Santacruz, A. Moya, and Y. Sanz, “Bacteroides uniformis CECT 7771 ameliorates metabolic and
immunological dysfunction in mice with high-fat-diet induced obesity,” PLoS One, vol. 7, no. 7, p. e41079, 2012. | en |
dcterms.references | B. R. Goldin and S. L. Gorbach, “Alterations of the intestinal microflora by diet, oral antibiotics, and
lactobacillus: Decreased production of free amines from aromatic nitro compounds, azo dyes, and
glucuronides,” J. Natl. Cancer Inst., vol. 73, no. 3, pp. 689–695, 1984 | en |
dcterms.references | B. R. Goldin and S. L. Gorbach, “The effect of milk and lactobacillus feeding on human intestinal bacterial
enzyme activity,” Am. J. Clin. Nutr., vol. 39, no. 5, pp. 756–761, 1984. | en |
dcterms.references | I. A. Kirpich et al., “Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver
injury: a pilot study,” Alcohol, vol. 42, no. 8, pp. 675–682, 2008. | en |
dcterms.references | Y. Wang et al., “Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor,
promotes intestinal integrity and ameliorates alcohol-induced liver injury,” Am. J. Pathol., vol. 179, no. 6, pp.
2866–2875, 2011 | en |
dcterms.references | M. Naruszewicz, M.-L. Johansson, D. Zapolska-Downar, and H. Bukowska, “Effect of Lactobacillus plantarum
299v on cardiovascular disease risk factors in smokers.,” Am. J. Clin. Nutr., vol. 76, no. 6, pp. 1249–55, 2002. | en |
dcterms.references | I. Kimura et al., “The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty
acid receptor GPR43.,” Nat. Commun., vol. 4, p. 1829, 2013. | en |
dcterms.references | K.-Y. Park, B. Kim, and C.-K. Hyun, “Lactobacillus rhamnosus GG improves glucose tolerance through
alleviating ER stress and suppressing macrophage activation in db/db mice.,” J. Clin. Biochem. Nutr., vol. 56,
no. 3, pp. 240–6, 2015. | en |
dcterms.references | K. A. Tappenden, D. M. Albin, A. L. Bartholome, and H. F. Mangian, “Glucagon-like peptide-2 and short-chain
fatty acids: a new twist to an old story,” J Nutr, vol. 133, no. 11, pp. 3717–3720, 2003. | en |
dcterms.references | V. Marcil, E. Delvin, C. Garofalo, and E. Levy, “Butyrate impairs lipid transport by inhibiting microsomal
triglyceride transfer protein in Caco-2 cells.,” J. Nutr., vol. 133, no. 7, pp. 2180–2183, 2003. | en |
dcterms.references | N. M. Delzenne, A. M. Neyrinck, and P. D. Cani, “Gut microbiota and metabolic disorders: How prebiotic can
work?,” Br. J. Nutr., vol. 109 Suppl, pp. S81-5, 2013. | en |
dcterms.references | M. Galisteo, J. Duarte, and A. Zarzuelo, “Effects of dietary fibers on disturbances clustered in the metabolic
syndrome,” Journal of Nutritional Biochemistry, vol. 19, no. 2. pp. 71–84, 2008. | en |
dcterms.references | E. Chambers et al., “Effects of targeted delivery of propionate to the human colon on appetite regulation,
body weight maintenance and adiposity in overweight adults,” Gut, p. gutjnl, 2014. | en |
dcterms.references | G. Frost, D. Morrison, and T. Preston, “Compounds And Their Effects On Appetite Control And Insulin
Sensitivity,” 2013. | en |
dcterms.references | Y.-Y. Ma, L. Li, C. Yu, Z. Shen, L. Chen, and Y. Li, “Effects of probiotics on nonalcoholic fatty liver disease: a
meta-analysis.,” World J. Gastroenterol., vol. 19, no. 40, pp. 6911–8, 2013 | en |
dcterms.references | Q. Liu, Z. P. Duan, D. K. Ha, S. Bengmark, J. Kurtovic, and S. M. Riordan, “Synbiotic Modulation of Gut Flora:
Effect on Minimal Hepatic Encephalopathy in Patients with Cirrhosis,” Hepatology, vol. 39, no. 5, pp. 1441–
1449, 2004. | en |
dcterms.references | Z. Asemi, A. Khorrami-Rad, and S. Alizadeh, “Effects of synbiotic food consumption on metabolic status of
diabetic patients: a double-blind randomized cross-over controlled clinical trial,” Clin. Nutr., vol. 33, no. 2, pp. 198–203, 2014.
- | en |
dcterms.references | Y. Kadooka et al., “Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults
with obese tendencies in a randomized controlled trial,” Eur. J. Clin. Nutr., vol. 64, no. 10, pp. 636–643, 2010. | en |
dcterms.references | L. V. McFarland, “Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the
treatment of Clostridium difficile disease,” Am. J. Gastroenterol., vol. 101, no. 4, pp. 812–822, 2006. | en |
dcterms.references | ] M. Ito, K. Ohishi, Y. Yoshida, W. Yokoi, and H. Sawada, “Antioxidative effects of lactic acid bacteria on the
colonic mucosa of iron-overloaded mice,” J. Agric. Food Chem., vol. 51, no. 15, pp. 4456–4460, 2003. | en |
dcterms.references | T. Kullisaar, J. Shepetova, and K. Zilmer, “An antioxidant probiotic reduces postprandial lipemia and oxidative
stress,” Cent. Eur. J. Biol., vol. 6, no. 1, pp. 32–40, 2011. | en |
dcterms.references | H. Chung, J. Yu, I. Lee, and M. Liu, “Intestinal removal of free fatty acids from hosts by Lactobacilli for the
treatment of obesity,” FEBS Open Bio, vol. 6, no. 1, pp. 64–76, 2016. | en |
dcterms.references | S. Thomas, D. Metzke, J. Schmitz, Y. Dörffel, and D. C. Baumgart, “Anti-inflammatory effects of
Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and
ulcerative colitis.,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 301, no. 6, pp. G1083-92, 2011. | en |
dcterms.references | J. P. Buts, N. Dekeyser, C. Stilmant, E. Delem, F. Smets, and E. Sokal, “Saccharomyces boulardii produces in
rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by
dephosphorylation,” Pediatr. Res., vol. 60, no. 1, pp. 24–29, 2006. | en |
dcterms.references | M. Fujiya et al., “The Bacillus subtilis Quorum-Sensing Molecule CSF Contributes to Intestinal Homeostasis
via OCTN2, a Host Cell Membrane Transporter,” Cell Host Microbe, vol. 1, no. 4, pp. 299–308, 2007. | en |
dcterms.references | A. Seth, F. Yan, D. Polk, and R. Rao, “Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier
disruption by a PKC-and MAP kinase-dependent mechanism,” Am. J. Physiol. Liver Physiol., vol. 294, no. 4,
pp. G1060–G1069, 2008. | en |
dcterms.references | E. O. Petrof et al., “Probiotics inhibit nuclear factor-kB and induce heat shock proteins in colonic epithelial
cells through proteasome inhibition,” Gastroenterology, vol. 127, no. 5, pp. 1474–1487, 2004. | en |
dcterms.references | A. Drewnowski and B. M. Popkin, “The Nutrition Transition: New Trends in the Global Diet,” Nutr. Rev., vol.
55, no. 2, pp. 31–43, 1997. | eng |
dcterms.references | F. B. Hu et al., “Reproducibility and validity of dietary patterns assessed with a food-frequency
questionnaire,” Am. J. Clin. Nutr., vol. 69, no. 2, pp. 243–249, 1999. | eng |
dcterms.references | M. L. Slattery, K. M. Boucher, B. J. Caan, J. D. Potter, and K. N. Ma, “Eating patterns and risk of colon cancer.,”
Am. J. Epidemiol., vol. 148, no. 1, pp. 4–16, 1998. | eng |
dcterms.references | A. Nanri et al., “Reproducibility and validity of dietary patterns assessed by a food frequency questionnaire
used in the 5-year follow-up survey of the Japan Public Health Center-Based Prospective Study,” J.
Epidemiol., vol. 22, no. 3, pp. 205–215, 2012 | eng |
dcterms.references | L. Cordain et al., “Origins and evolution of the Western diet: health implications for the 21st century.,” Am.
J. Clin. Nutr., vol. 81, no. 2, pp. 341–54, 2005. | eng |
dcterms.references | W. Price, “Nutrition and Physical Degeneration,” Can. Med. Assoc. J., vol. 42, no. 2, p. 208, 1939. | eng |
dcterms.references | S. Parry and L. Straker, “The contribution of office work to sedentary behaviour associated risk,” BMC Public Health, vol. 13, no. 1, pp. 1–10, 2013. | eng |
dcterms.references | CDC, “Vital signs: binge drinking prevalence, frequency, and intensity among adults - United States, 2010.,”
2012. | eng |
dcterms.references | WHO, “Global status report on noncommunicable diseases 2014,” World Health, p. 176, 2014. | eng |
dcterms.references | S. Kanoski and T. Davidson, “Western diet consumption and cognitive impairment: links to hippocampal
dysfunction and obesity,” Physiol. Behav., vol. 103, no. 1, pp. 59–68, 2011. | eng |
dcterms.references | L. Bazzano, “Dietary intake of fruit and vegetables and risk of diabetes mellitus and cardiovascular diseases,”
Geneva WHO, 2005. | eng |
dcterms.references | F. M. Trovato, D. Catalano, G. F. Martines, P. Pace, and G. M. Trovato, “Mediterranean diet and non-alcoholic
fatty liver disease. The need of extended and comprehensive interventions,” Clin. Nutr., vol. 34, no. 1, pp.
86–88, 2015. | eng |
dcterms.references | J. M. Geleijnse, F. J. Kok, and D. E. Grobbee, “Impact of dietary and lifestyle factors on the prevalence of
hypertension in Western populations,” Eur. J. Public Health, vol. 14, no. 3, pp. 235–239, 2004. | eng |
dcterms.references | S. Jehle, A. Zanetti, J. Muser, H. N. Hulter, and R. Krapf, “Partial neutralization of the acidogenic Western diet
with potassium citrate increases bone mass in postmenopausal women with osteopenia.,” J. Am. Soc.
Nephrol., vol. 17, no. 11, pp. 3213–3222, 2006. | eng |
dcterms.references | A. Manzel, D. N. Muller, D. A. Hafler, S. E. Erdman, R. A. Linker, and M. Kleinewietfeld, “Role of ‘western diet’
in inflammatory autoimmune diseases,” Curr. Allergy Asthma Rep., vol. 14, no. 1, pp. 1–8, 2014. | eng |
dcterms.references | H. Adlercreutz, “Western diet and Western diseases: Some hormonal and biochemical mechanisms and
associations,” Scand. J. Clin. Lab. Invest. Suppl., vol. 50, no. sup201, pp. 3–23, 1990. | eng |
dcterms.references | J. Lederberg and A. McCray, “Ome SweetOmics--A Genealogical Treasury of Words,” Sci., vol. 15, no. 7, p. 8,
2001. | eng |
dcterms.references | C. Huttenhower et al., “Structure, function and diversity of the healthy human microbiome,” Nature, vol.
486, no. 7402, pp. 207–214, 2012. | eng |
dcterms.references | P. B. Eckburg et al., “Diversity of the human intestinal microbial flora.,” Science, vol. 308, no. 5728, pp. 1635–
8, 2005 | eng |
dcterms.references | J. Qin, R. Li, J. Raes, and M. Arumugam, “A human gut microbial gene catalogue established by metagenomic
sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010. | eng |
dcterms.references | M. Frémont, D. Coomans, S. Massart, and K. De Meirleir, “High-throughput 16S rRNA gene sequencing
reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients,”
Anaerobe, vol. 22, pp. 50–56, 2013. | eng |
dcterms.references | X. Zhang et al., “The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized
after treatment.,” Nat. Med., vol. 21, no. 8, pp. 895–905, 2015. | eng |
dcterms.references | C. T. Brown et al., “Gut microbiome metagenomics analysis suggests a functional model for the development
of autoimmunity for type 1 diabetes,” PLoS One, vol. 6, no. 10, 2011. | eng |
dcterms.references | N. Larsen et al., “Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults,” PLoS One, vol. 5, no. 2, 2010. | eng |
dcterms.references | K. Forslund et al., “Disentangling type 2 diabetes and metformin treatment signatures in the human gut
microbiota.,” Nature, vol. 528, no. 7581, pp. 262–266, 2015. | eng |
dcterms.references | M. Joossens et al., “Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected
relatives,” Gut, vol. 60, no. 5, pp. 631–637, 2011. | eng |
dcterms.references | A. R. Erickson et al., “Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota
Signatures of Crohn’s Disease,” PLoS One, vol. 7, no. 11, 2012. | eng |
dcterms.references | I. A. Finnie, A. D. Dwarakanath, B. A. Taylor, and J. M. Rhodes, “Colonic mucin synthesis is increased by
sodium butyrate.,” Gut, vol. 36, no. 1, pp. 93–9, 1995. | eng |
dcterms.references | L. Peng, Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin, “Butyrate enhances the intestinal barrier by facilitating
tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers.,” J. Nutr.,
vol. 139, no. 9, pp. 1619–1625, 2009. | eng |
dcterms.references | M. A. R. Vinolo, H. G. Rodrigues, R. T. Nachbar, and R. Curi, “Regulation of Inflammation by Short Chain Fatty
Acids,” Nutrients, vol. 3, no. 12, pp. 858–876, 2011. | eng |
dcterms.references | P. Louis, P. Young, G. Holtrop, and H. J. Flint, “Diversity of human colonic butyrate-producing bacteria
revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene,” Environ. Microbiol., vol. 12, no. 2, pp.
304–314, 2010. | eng |
dcterms.references | M. J. Hopkins, R. Sharp, and G. T. Macfarlane, “Age and disease related changes in intestinal bacterial
populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles.,” Gut,
vol. 48, no. 2, pp. 198–205, 2001. | eng |
dcterms.references | P. J. Turnbaugh et al., “A core gut microbiome in obese and lean twins.,” Nature, vol. 457, no. 7228, pp. 480–
484, 2009. | eng |
dcterms.references | L. C. Kong et al., “Gut microbiota after gastric bypass in human obesity: Increased richness and associations
of bacterial genera with adipose tissue genes,” Am. J. Clin. Nutr., vol. 98, no. 1, pp. 16–24, 2013. | eng |
dcterms.references | C. de Weerth, S. Fuentes, P. Puylaert, and W. M. de Vos, “Intestinal microbiota of infants with colic:
development and specific signatures.,” Pediatrics, vol. 131, no. 2, pp. e550-8, 2013. | eng |
dcterms.references | ] T. Yatsunenko et al., “Human gut microbiome viewed across age and geography,” Nature, vol. 486, no. 7402,
pp. 222–227, 2012. | eng |
dcterms.references | C. A. Lozupone, M. E. Rhodes, C. P. Neff, A. P. Fontenot, T. B. Campbell, and B. E. Palmer, “HIV-induced
alteration in gut microbiota,” Gut Microbes, vol. 5, no. 4, pp. 562–570, 2014 | eng |
dcterms.references | W. H. W. Tang et al., “Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.,” N.
Engl. J. Med., vol. 368, no. 17, pp. 1575–84, 2013. | eng |
dcterms.references | R. a Koeth et al., “Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes
atherosclerosis,” Nat. Med., vol. 19, no. April, pp. 576–85, 2013. | eng |
dcterms.references | T. Poutahidis et al., “Microbial Reprogramming Inhibits Western Diet-Associated Obesity,” PLoS One, vol. 8,
no. 7, p. e68596, 2013. | eng |
dcterms.references | F. Armougom, M. Henry, B. Vialettes, D. Raccah, and D. Raoult, “Monitoring bacterial community of human
gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients,”
PLoS One, vol. 4, no. 9, p. e7125, 2009. | eng |
dcterms.references | M. Million et al., “Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in
Bifidobacterium animalis and Methanobrevibacter smithii.,” Int. J. Obes. (Lond)., vol. 36, no. 6, pp. 817–25,
2012. | eng |
dcterms.references | F. Fåk and F. Bäckhed, “Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a
strain dependent fashion in Apoe−/− mice,” PLoS One, vol. 7, no. 10, p. e46837, 2012. | eng |
dcterms.references | M. P. Diaz-Ropero et al., “Two Lactobacillus strains, isolated from breast milk, differently modulate the
immune response,” J. Appl. Microbiol., vol. 102, no. 2, pp. 337–343, 2007. | eng |
dcterms.references | B. T. Burton and W. R. Foster, “Health implications of obesity: an NIH Consensus Development Conference,”
J. Am. Diet. Assoc., vol. 85, no. 9, pp. 1117–1121, 1985 | eng |
dcterms.references | C. Ogden, S. Yanovski, M. Carroll, and K. Flegal, “The epidemiology of obesity,” Gastroenterology, vol. 132,
no. 6, pp. 2087–2102, 2007. | eng |
dcterms.references | J. V Van Vliet-Ostaptchouk et al., “The prevalence of Metabolic Syndrome and metabolically healthy obesity
in Europe: a collaborative analysis of ten large cohort studies.,” BMC Endocr. Disord., vol. 14, no. 9, pp. 1–
13, 2014. | eng |
dcterms.references | N. Klöting et al., “Insulin-sensitive obesity,” Am. J. Physiol. - Endocrinol. Metab., vol. 299, no. 3, pp. 506–515,
2010. | eng |
dcterms.references | J. Naukkarinen et al., “Characterising metabolically healthy obesity in weight-discordant monozygotic twins,”
Diabetologia, vol. 57, no. 1, pp. 167–176, 2014. | eng |
dcterms.references | K. Azuma et al., “Higher liver fat content among Japanese in Japan compared with non-Hispanic whites in
the United States,” Metabolism., vol. 58, no. 8, pp. 1200–1207, 2009. | eng |
dcterms.references | R. W. Walker et al., “High rates of fructose malabsorption are associated with reduced liver fat in obese
African Americans.,” J. Am. Coll. Nutr., vol. 31, no. 5, pp. 369–74, 2012 | eng |
dcterms.references | R. Guerrero, G. L. Vega, S. M. Grundy, and J. D. Browning, “Ethnic differences in hepatic steatosis: An insulin
resistance paradox?,” Hepatology, vol. 49, no. 3, pp. 791–801, 2009. | eng |
dcterms.references | M. G. Marmot, S. L. Syme, A. Kagan, H. Kato, J. B. Cohen, and J. Belsky, “Epidemiologic studies of coronary
heart disease and stroke in Japanese men living in Japan, Hawaii and California: prevalence of coronary and
hypertensive heart disease and associated risk factors.,” Am. J. Epidemiol., vol. 102, no. 6, pp. 514–25, 1975. | eng |
dcterms.references | C. B. Newgard, “Interplay between lipids and branched-chain amino acids in development of insulin
resistance,” Cell Metabolism, vol. 15, no. 5. pp. 606–614, 2012. | eng |
dcterms.references | M. Raman et al., “Fecal microbiome and volatile organic compound metabolome in obese humans with
nonalcoholic fatty liver disease,” Clin. Gastroenterol. Hepatol., vol. 11, no. 7, pp. 868–875, 2013. | eng |
dcterms.references | L. Zhu et al., “Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A
connection between endogenous alcohol and NASH,” Hepatology, vol. 57, no. 2, pp. 601–609, 2013. | eng |
dcterms.references | J. Boursier and A. M. Diehl, “Nonalcoholic Fatty Liver Disease and the Gut Microbiome,” Clinics in Liver Disease, vol. 20, no. 2. pp. 263–275, 2016. | eng |
dcterms.references | F. Bäckhed, J. K. Manchester, C. F. Semenkovich, and J. I. Gordon, “Mechanisms underlying the resistance to
diet-induced obesity in germ-free mice,” Proc. Natl. Acad. Sci., vol. 104, no. 3, pp. 979–984, 2007. | eng |
dcterms.references | A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise.,” J. Appl. Physiol., vol. 98,
no. 4, pp. 1154–1162, 2005. | eng |
dcterms.references | J. M. Wells, O. Rossi, M. Meijerink, and P. van Baarlen, “Epithelial crosstalk at the microbiota-mucosal
interface.,” Proc. Natl. Acad. Sci. U. S. A., vol. 108 Suppl, pp. 4607–4614, 2011. | eng |
dcterms.references | G. G. Muccioli et al., “The endocannabinoid system links gut microbiota to adipogenesis.,” Mol. Syst. Biol.,
vol. 6, no. 392, p. 392, 2010. | eng |
dcterms.references | H. Nakarai et al., “Adipocyte-macrophage interaction may mediate LPS-induced low-grade inflammation:
potential link with metabolic complications.,” Innate Immun., vol. 18, no. 1, pp. 164–70, 2012. | eng |
dcterms.references | F. S. Lira et al., “Endotoxin levels correlate positively with a sedentary lifestyle and negatively with highly
trained subjects.,” Lipids Health Dis., vol. 9, no. 1, p. 82, 2010. | eng |
dcterms.references | E. Pace et al., “Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated
responses in airway epithelial cells,” Immunology, vol. 124, no. 3, pp. 401–411, 2008 | eng |
dcterms.references | M. Lyte and S. Ernst, “Catecholamine induced growth of gram negative bacteria,” Life Sci., vol. 50, no. 3, pp.
203–212, 1992. | eng |
dcterms.references | P. P. E. Freestone, S. M. Sandrini, R. D. Haigh, and M. Lyte, “Microbial endocrinology: how stress influences
susceptibility to infection,” Trends in Microbiology, vol. 16, no. 2. pp. 55–64, 2008 | eng |
dcterms.references | M. Lyte and M. T. Bailey, “Neuroendocrine-bacterial interactions in a neurotoxin-induced model of trauma.,”
J. Surg. Res., vol. 70, no. 2, pp. 195–201, 1997. | eng |
dcterms.references | M. Lyte, C. D. Frank, and B. T. Green, “Production of an autoinducer of growth by norepinephrine cultured
Escherichia coli O157:H7,” FEMS Microbiol. Lett., vol. 139, no. 2–3, pp. 155–159, 1996. | eng |
dcterms.references | P. D. Cani et al., “Metabolic endotoxemia initiates obesity and insulin resistance,” Diabetes, vol. 56, no. 7,
pp. 1761–1772, 2007. | eng |
dcterms.references | S. Ghoshal, J. Witta, J. Zhong, W. de Villiers, and E. Eckhardt, “Chylomicrons promote intestinal absorption
of lipopolysaccharides.,” J. Lipid Res., vol. 50, no. 1, pp. 90–97, 2009. | eng |
dcterms.references | S. Sadeghi, F. A. Wallace, and P. C. Calder, “Dietary lipids modify the cytokine response to bacterial
lipopolysaccharide in mice,” Immunology, vol. 96, no. 3, pp. 404–410, 1999. | eng |
dcterms.references | E. Mascioli, L. Leader, E. Flores, S. Trimbo, B. Bistrian, and G. Blackburn, “Enhanced survival to endotoxin in
guinea pigs fed IV fish oil emulsion,” Lipids, vol. 23, no. 6, pp. 623–625, 1988. | eng |
dcterms.references | B. Di Luccia et al., “Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation
in a rat model of obesity,” PLoS One, vol. 10, no. 8, p. e0134893, 2015 | eng |
dcterms.references | I. Bergheim et al., “Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of
endotoxin,” J. Hepatol., vol. 48, no. 6, pp. 983–992, 2008 | eng |
dcterms.references | X. Ouyang et al., “Fructose consumption as a risk factor for non-alcoholic fatty liver disease,” J. Hepatol., vol.
48, no. 6, pp. 993–999, 2008. | eng |
dcterms.references | A. Salonen and W. M. de Vos, “Impact of diet on human intestinal microbiota and health.,” Annu. Rev. Food
Sci. Technol., vol. 5, pp. 239–62, 2014. | eng |
dcterms.references | H. Flint, K. Scott, P. Louis, and S. Duncan, “The role of the gut microbiota in nutrition and health,” Nat. Rev.
Gastroenterol. Hepatol., vol. 9, no. 10, pp. 577–589, 2012. | eng |
dcterms.references | B. Ling, F. Peng, J. Alcorn, K. Lohmann, B. Bandy, and G. a Zello, “D-Lactate altered mitochondrial energy
production in rat brain and heart but not liver,” Nutr. Metab. (Lond)., vol. 9, no. 1, p. 6, 2012. | eng |
dcterms.references | J. B. Ewaschuk, J. M. Naylor, and G. a Zello, “D-lactate in human and ruminant metabolism.,” J. Nutr., vol.
135, no. 7, pp. 1619–1625, 2005. | eng |
dcterms.references | J. R. Sheedy et al., “Increased D-lactic acid intestinal bacteria in patients with chronic fatigue syndrome,” In
Vivo (Brooklyn)., vol. 23, no. 4, pp. 621–628, 2009. | eng |
dcterms.references | J. Uribarri, M. S. Oh, and H. J. Carroll, “D-lactic acidosis. A review of clinical presentation, biochemical
features, and pathophysiologic mechanisms.,” Medicine (Baltimore)., vol. 77, no. 2, pp. 73–82, 1998. | eng |
dcterms.references | K. J. Atkinson and R. K. Rao, “Role of protein tyrosine phosphorylation in acetaldehyde-induced disruption
of epithelial tight junctions.,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 280, no. 6, pp. G1280–G1288,
2001. | eng |
dcterms.references | M. Salaspuro, “Bacteriocolonic pathway for ethanol oxidation: characteristics and implications,” Ann Med,
vol. 28, no. 3, pp. 195–200, 1996. | eng |
dcterms.references | R. M. Wright, J. L. McManaman, and J. E. Repine, “Alcohol-induced breast cancer: A proposed mechanism,”
Free Radic. Biol. Med., vol. 26, no. 3–4, pp. 348–354, 1999. | eng |
dcterms.references | G. den Besten, K. van Eunen, A. Groen, K. Venema, D. Reijngoud, and B. Bakker, “The role of short-chain fatty
acids in the interplay between diet, gut microbiota, and host energy metabolism,” J. Lipid Res., vol. 54, no.
9, pp. 2325–2340, 2013. | eng |
dcterms.references | R. Hughes, E. a Magee, and S. Bingham, “Protein degradation in the large intestine: relevance to colorectal
cancer.,” Curr. Issues Intest. Microbiol., vol. 1, no. 2, pp. 51–58, 2000. | eng |
dcterms.references | W. R. Russell et al., “High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely
to be detrimental to colonic health,” Am. J. Clin. Nutr., vol. 93, no. 5, pp. 1062–1072, 2011. | eng |
dcterms.references | R. Koeth, Z. Wang, B. Levison, and J. Buffa, “Intestinal microbiota metabolism of L-carnitine, a nutrient in red
meat, promotes atherosclerosis,” Nat. Med., vol. 19, no. 5, pp. 576–585, 2013. | eng |
dcterms.references | S. Bengmark, “Bio-ecological control of chronic liver disease and encephalopathy,” Metabolic Brain Disease,
vol. 24, no. 1. pp. 223–236, 2009. | eng |
dcterms.references | R. Wade and C. Castro, “Redox reactivity of iron (III) porphyrins and heme proteins with nitric oxide. Nitrosyl
transfer to carbon, oxygen, nitrogen and sulfur,” Chem. Res. Toxicol., vol. 3, no. 4, pp. 289–291, 1990 | eng |
dcterms.references | G. R. Gibson, J. H. Cummings, and G. T. Macfarlane, “Growth and activities of sulphate-reducing bacteria in
gut contents of healthy subjects and patients with ulcerative colitis,” FEMS Microbiol. Lett., vol. 86, no. 2,
pp. 103–111, 1991. | eng |
dcterms.references | M. S. Attene-Ramos, E. D. Wagner, M. J. Plewa, and H. R. Gaskins, “Evidence that hydrogen sulfide is a
genotoxic agent,” Mol Cancer Res, vol. 4, no. 1, pp. 9–14, 2006. | eng |
dcterms.references | R. J. Bloomer and K. H. Fisher-Wellman, “Lower postprandial oxidative stress in women compared with men,”
Gend. Med., vol. 7, no. 4, pp. 340–349, 2010. | eng |
dcterms.references | ] R. Caesar, F. Fåk, and F. Bäckhed, “Effects of gut microbiota on obesity and atherosclerosis via modulation
of inflammation and lipid metabolism: Review,” J. Intern. Med., vol. 268, no. 4, pp. 320–328, 2010 | eng |
dcterms.references | H. van der Vaart, D. S. Postma, W. Timens, and N. H. T. ten Hacken, “Acute effects of cigarette smoke on
inflammation and oxidative stress: a review.,” Thorax, vol. 59, no. 8, pp. 713–721, 2004. | eng |
dcterms.references | X. Zhang, G. Zhang, H. Zhang, M. Karin, H. Bai, and D. Cai, “Hypothalamic IKKa/NF-kB and ER Stress Link
Overnutrition to Energy Imbalance and Obesity,” Cell, vol. 135, no. 1, pp. 61–73, 2008. | eng |
dcterms.references | P. Sheth, S. Basuroy, C. Li, A. P. Naren, and R. K. Rao, “Role of phosphatidylinositol 3-kinase in oxidative
stress-induced disruption of tight junctions.,” J. Biol. Chem., vol. 278, no. 49, pp. 49239–49245, 2003. | eng |
dcterms.references | M. Maes and J. Leunis, “Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a
clinical improvement: effects of age, duration of illness and the translocation,” Neuroendocrinol. Lett., vol.
29, no. 6, p. 902, 2008. | eng |
dcterms.references | M. L. Jones, C. J. Martoni, J. G. Ganopolsky, A. Labbé, and S. Prakash, “The human microbiome and bile acid
metabolism: dysbiosis, dysmetabolism, disease and intervention.,” Expert Opin. Biol. Ther., vol. 14, no. 4, pp.
467–82, 2014. | eng |
dcterms.references | L. Furuya-Kanamori et al., “Comorbidities, Exposure to Medications, and the Risk of Community-Acquired
Clostridium difficile Infection: A Systematic Review and Meta-analysis,” Infect. Control Hosp. Epidemiol., vol.
36, no. 02, pp. 132–141, 2014. | eng |
dcterms.references | R. Ungaro et al., “Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative
colitis: a meta-analysis.,” Am. J. Gastroenterol., vol. 109, no. 11, pp. 1728–38, 2014. | eng |
dcterms.references | L. M. Cox and M. J. Blaser, “Antibiotics in early life and obesity.,” Nat. Rev. Endocrinol., vol. 11, no. 3, pp.
182–90, 2015. | eng |
dcterms.references | M. J. Blaser and S. Falkow, “What are the consequences of the disappearing human microbiota?,” Nat. Rev.
Microbiol., vol. 7, no. 12, pp. 887–894, 2009. | eng |
dcterms.references | A. Moeller et al., “Cospeciation of gut microbiota with hominids,” Science (80-. )., vol. 353, no. 6297, pp.
380–382, 2016. | eng |
dcterms.references | K. E. Nichol, W. W. Poon, A. I. Parachikova, D. H. Cribbs, C. G. Glabe, and C. W. Cotman, “Exercise alters the
immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive
performance and decreased amyloid.,” J. Neuroinflammation, vol. 5, no. 1, p. 13, 2008 | eng |
dcterms.references | R. Starkie, S. R. Ostrowski, S. Jauffred, M. Febbraio, and B. K. Pedersen, “Exercise and IL-6 infusion inhibit
endotoxin-induced TNF-alpha production in humans.,” FASEB J., vol. 17, no. 8, pp. 884–886, 2003. | eng |
dcterms.references | K. H. Schmitz, D. R. Jacobs, C.-P. Hong, J. Steinberger, a Moran, and a R. Sinaiko, “Association of physical
activity with insulin sensitivity in children.,” Int. J. Obes. Relat. Metab. Disord., vol. 26, no. 10, pp. 1310–1316,
2002. | eng |
dcterms.references | M. Matsumoto et al., “Impact of intestinal microbiota on intestinal luminal metabolome,” Sci. Rep., vol. 2, p.
233, 2012. | eng |
dcterms.references | R. Campos-Rodriguez, M. Godinez-Victoria, A. A. Arciniega-Martínez, I.M., Resendiz-Albor, H. Reyna-Garfias,
T. R. Cruz-Hernández, and M. E. Drago-Serrano, “Protective Effect of Moderate Exercise for BALB/c Mice with
Salmonella Typhimurium Infection.,” Int. J. Sports Med., vol. 37, no. 01, pp. 63–70, 2016. | eng |
dcterms.references | H. Sies, W. Stahl, and A. Sevanian, “Nutritional, dietary and postprandial oxidative stress,” J. Nutr., vol. 135,
no. 5, pp. 969–972, 2005. | eng |
dcterms.references | K. Wang, X. Jin, Y. Chen, Z. Song, and X. Jiang, “Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier
Function by Activating AMPK and ERK Signaling,” Nutrients, vol. 8, no. 5, p. 272, 2016 | eng |
dcterms.references | T. Cowan, M. Palmnas, K. Ardell, and J. Yang, “Chronic coffee consumption alters gut microbiome: potential
mechanism to explain the protective effects of coffee on type 2 diabetes?,” FASEB J., vol. 27, no.
1_MeetingAbstracts, pp. 951–1, 2013. | eng |
dcterms.references | F. F. Anhê et al., “A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance
and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota
of mice.,” Gut, vol. 64, no. 6, pp. 872–83, 2015. | eng |
dcterms.references | H.-J. He, G.-Y. Wang, Y. Gao, W.-H. Ling, Z.-W. Yu, and T.-R. Jin, “Curcumin attenuates Nrf2 signaling defect,
oxidative stress in muscle and glucose intolerance in high fat diet-fed mice,” World J. Diabetes, vol. 3, no. 5,
p. 94, 2012. | eng |
dcterms.references | S. Ghosh et al., “Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious
Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis,” PLoS One, vol. 8, no. 2, p. e55468, 2013 | eng |
dcterms.references | D. Roopchand, R. Carmody, and P. Kuhn, “Dietary Polyphenols Promote Growth of the Gut Bacterium
Akkermansia muciniphila and Attenuate High-Fat Diet–Induced Metabolic Syndrome,” Diabetes, vol. 64, no.
8, pp. 2847–2858, 2015. | eng |
dcterms.references | L. Thompson and R. C. Spiller, “Impact of polyunsaturated fatty acids on human colonic bacterial metabolism:
an in vitro and in vivo study.,” Br. J. Nutr., vol. 74, no. 5, pp. 733–41, 1995. | eng |
dcterms.references | FAO/WHO, “Guidelines for the evaluation of probiotics in food,” London World Heal. Organ. ON, Canada
Food Agric. Organ., 2002. | eng |
dcterms.references | S. Doron and S. L. Gorbach, “Probiotics: their role in the treatment and prevention of disease.,” Expert Rev.
Anti. Infect. Ther., vol. 4, no. 2, pp. 261–275, 2006. | eng |
dcterms.references | D. Y. Park et al., “Supplementation of Lactobacillus curvatus KY1032 in Diet-Induced Obese Mice Is
Associated with Gut Microbial Changes and Reduction in Obesity,” PLoS One, vol. 8, no. 3, p. 59470, 2013. | eng |
dcterms.references | D. Y. Park, Y. T. Ahn, C. S. Huh, R. A. Mcgregor, and M. S. Choi, “Dual probiotic strains suppress high fructoseinduced metabolic syndrome,” World J. Gastroenterol., vol. 19, no. 2, pp. 274–283, 2013. | eng |
dcterms.references | A. Everard et al., “Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 22, pp. 9066–71, 2013. | eng |
dcterms.references | P. G. Cano, A. Santacruz, A. Moya, and Y. Sanz, “Bacteroides uniformis CECT 7771 ameliorates metabolic and
immunological dysfunction in mice with high-fat-diet induced obesity,” PLoS One, vol. 7, no. 7, p. e41079, 2012. | eng |
dcterms.references | B. R. Goldin and S. L. Gorbach, “Alterations of the intestinal microflora by diet, oral antibiotics, and
lactobacillus: Decreased production of free amines from aromatic nitro compounds, azo dyes, and
glucuronides,” J. Natl. Cancer Inst., vol. 73, no. 3, pp. 689–695, 1984 | eng |
dcterms.references | B. R. Goldin and S. L. Gorbach, “The effect of milk and lactobacillus feeding on human intestinal bacterial
enzyme activity,” Am. J. Clin. Nutr., vol. 39, no. 5, pp. 756–761, 1984. | eng |
dcterms.references | I. A. Kirpich et al., “Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver
injury: a pilot study,” Alcohol, vol. 42, no. 8, pp. 675–682, 2008. | eng |
dcterms.references | Y. Wang et al., “Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor,
promotes intestinal integrity and ameliorates alcohol-induced liver injury,” Am. J. Pathol., vol. 179, no. 6, pp.
2866–2875, 2011 | eng |
dcterms.references | M. Naruszewicz, M.-L. Johansson, D. Zapolska-Downar, and H. Bukowska, “Effect of Lactobacillus plantarum
299v on cardiovascular disease risk factors in smokers.,” Am. J. Clin. Nutr., vol. 76, no. 6, pp. 1249–55, 2002. | eng |
dcterms.references | I. Kimura et al., “The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty
acid receptor GPR43.,” Nat. Commun., vol. 4, p. 1829, 2013. | eng |
dcterms.references | K.-Y. Park, B. Kim, and C.-K. Hyun, “Lactobacillus rhamnosus GG improves glucose tolerance through
alleviating ER stress and suppressing macrophage activation in db/db mice.,” J. Clin. Biochem. Nutr., vol. 56,
no. 3, pp. 240–6, 2015. | eng |
dcterms.references | K. A. Tappenden, D. M. Albin, A. L. Bartholome, and H. F. Mangian, “Glucagon-like peptide-2 and short-chain
fatty acids: a new twist to an old story,” J Nutr, vol. 133, no. 11, pp. 3717–3720, 2003. | eng |
dcterms.references | V. Marcil, E. Delvin, C. Garofalo, and E. Levy, “Butyrate impairs lipid transport by inhibiting microsomal
triglyceride transfer protein in Caco-2 cells.,” J. Nutr., vol. 133, no. 7, pp. 2180–2183, 2003. | eng |
dcterms.references | N. M. Delzenne, A. M. Neyrinck, and P. D. Cani, “Gut microbiota and metabolic disorders: How prebiotic can
work?,” Br. J. Nutr., vol. 109 Suppl, pp. S81-5, 2013. | eng |
dcterms.references | M. Galisteo, J. Duarte, and A. Zarzuelo, “Effects of dietary fibers on disturbances clustered in the metabolic
syndrome,” Journal of Nutritional Biochemistry, vol. 19, no. 2. pp. 71–84, 2008. | eng |
dcterms.references | E. Chambers et al., “Effects of targeted delivery of propionate to the human colon on appetite regulation,
body weight maintenance and adiposity in overweight adults,” Gut, p. gutjnl, 2014. | eng |
dcterms.references | G. Frost, D. Morrison, and T. Preston, “Compounds And Their Effects On Appetite Control And Insulin
Sensitivity,” 2013. | eng |
dcterms.references | Y.-Y. Ma, L. Li, C. Yu, Z. Shen, L. Chen, and Y. Li, “Effects of probiotics on nonalcoholic fatty liver disease: a
meta-analysis.,” World J. Gastroenterol., vol. 19, no. 40, pp. 6911–8, 2013 | eng |
dcterms.references | Q. Liu, Z. P. Duan, D. K. Ha, S. Bengmark, J. Kurtovic, and S. M. Riordan, “Synbiotic Modulation of Gut Flora:
Effect on Minimal Hepatic Encephalopathy in Patients with Cirrhosis,” Hepatology, vol. 39, no. 5, pp. 1441–
1449, 2004. | eng |
dcterms.references | Z. Asemi, A. Khorrami-Rad, and S. Alizadeh, “Effects of synbiotic food consumption on metabolic status of
diabetic patients: a double-blind randomized cross-over controlled clinical trial,” Clin. Nutr., vol. 33, no. 2, pp. 198–203, 2014.
- | eng |
dcterms.references | Y. Kadooka et al., “Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults
with obese tendencies in a randomized controlled trial,” Eur. J. Clin. Nutr., vol. 64, no. 10, pp. 636–643, 2010. | eng |
dcterms.references | L. V. McFarland, “Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the
treatment of Clostridium difficile disease,” Am. J. Gastroenterol., vol. 101, no. 4, pp. 812–822, 2006. | eng |
dcterms.references | ] M. Ito, K. Ohishi, Y. Yoshida, W. Yokoi, and H. Sawada, “Antioxidative effects of lactic acid bacteria on the
colonic mucosa of iron-overloaded mice,” J. Agric. Food Chem., vol. 51, no. 15, pp. 4456–4460, 2003. | eng |
dcterms.references | T. Kullisaar, J. Shepetova, and K. Zilmer, “An antioxidant probiotic reduces postprandial lipemia and oxidative
stress,” Cent. Eur. J. Biol., vol. 6, no. 1, pp. 32–40, 2011. | eng |
dcterms.references | H. Chung, J. Yu, I. Lee, and M. Liu, “Intestinal removal of free fatty acids from hosts by Lactobacilli for the
treatment of obesity,” FEBS Open Bio, vol. 6, no. 1, pp. 64–76, 2016. | eng |
dcterms.references | S. Thomas, D. Metzke, J. Schmitz, Y. Dörffel, and D. C. Baumgart, “Anti-inflammatory effects of
Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and
ulcerative colitis.,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 301, no. 6, pp. G1083-92, 2011. | eng |
dcterms.references | J. P. Buts, N. Dekeyser, C. Stilmant, E. Delem, F. Smets, and E. Sokal, “Saccharomyces boulardii produces in
rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by
dephosphorylation,” Pediatr. Res., vol. 60, no. 1, pp. 24–29, 2006. | eng |
dcterms.references | M. Fujiya et al., “The Bacillus subtilis Quorum-Sensing Molecule CSF Contributes to Intestinal Homeostasis
via OCTN2, a Host Cell Membrane Transporter,” Cell Host Microbe, vol. 1, no. 4, pp. 299–308, 2007. | eng |
dcterms.references | A. Seth, F. Yan, D. Polk, and R. Rao, “Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier
disruption by a PKC-and MAP kinase-dependent mechanism,” Am. J. Physiol. Liver Physiol., vol. 294, no. 4,
pp. G1060–G1069, 2008. | eng |
dcterms.references | E. O. Petrof et al., “Probiotics inhibit nuclear factor-kB and induce heat shock proteins in colonic epithelial
cells through proteasome inhibition,” Gastroenterology, vol. 127, no. 5, pp. 1474–1487, 2004. | eng |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |