Mostrar el registro sencillo del ítem
Propuesta de construcción de un índice volatilidad diversificado
dc.contributor.author | Fonseca Torres, John Walter | |
dc.date.accessioned | 2019-11-29T16:34:10Z | |
dc.date.available | 2019-11-29T16:34:10Z | |
dc.date.issued | 2019-10-21 | |
dc.identifier.uri | http://hdl.handle.net/10818/38517 | |
dc.description | 33 páginas | es_CO |
dc.description.abstract | Los administradores de portafolio, enfrentan diariamente entornos volátiles como consecuencia de la interacción de instrumentos financieros. La adecuada gestión del riesgo con herramientas de información y seguimiento permiten señalar cambios en las cotizaciones de diferentes activos. No obstante, estas herramientas tienen en común la presentación de datos de forma individual, desconociendo la alta asociación de los mercados financieros. Los escenarios de tensión en los mercados mundiales incrementan la aversión al riesgo de los inversionistas e impactan la rentabilidad de los portafolios. Existen indicadores que se encargan de monitorear los niveles de volatilidad de diferentes activos. El VIX (Chicago Board Options Exchange SPX Volatility Index), es el más reconocido y refleja un estimado del mercado de la volatilidad futura sobre el índice accionario S&P. Sin embargo, se concentra en el entorno de renta variable, excluyendo las interacciones que se presentan entre los diferentes activos y mercados. Con el objetivo de subsanar las limitaciones descritas, se propone el diseño de un instrumento de medición de volatilidad que incluya un conjunto de diferentes activos de los principales mercados financieros. Este nuevo indicador pretende capturar el efecto de interacción de los mercados y por tanto recogerá de forma más amplia las fluctuaciones de los activos que componen dicho índice. | |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Portafolio de inversiones | |
dc.subject | Cambio organizacional | |
dc.subject | Inversiones | |
dc.subject | Rentabilidad | |
dc.subject | Mercados financieros | |
dc.title | Propuesta de construcción de un índice volatilidad diversificado | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Gerencia de Inversión | es_CO |
dc.publisher.department | Escuela Internacional de Ciencias Económicas y Administrativas | es_CO |
dc.identifier.local | 275266 | |
dc.identifier.local | TE10461 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Gerencia de Inversión | es_CO |
dcterms.references | Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, Vol 50, pp 987–1007. | eng |
dcterms.references | Lombardi, M. and Schrimpf, A. (2014) Concepto de volatilidad y la prima de riesgo. Bank for International Settlements BIS Quarterly Review, informe trimestral del PIB, pp 12-13. | eng |
dcterms.references | Aboura, S. and Chevallier, J. (2015) Geographical diversification with a World Volatility Index. Journal of Multinational Financial Management, Vol 30, issue C, 62-82. | eng |
dcterms.references | MacDonald, R. Sogiakas, V. and Tsopanakis, A. (2018) Volatility co-movements and spilloover effects within the Eurozone economies: A multivariate GARCH approach using the Financial Stress Index. Journal of International Financial Markets, Institutions and Money, 52, pp. 17-36. | eng |
dcterms.references | Pattipeilohy,C. and Schrimpf, A. (2014) Volatility stirs, markets unshaken. Bank for International Settlements BIS Quarterly Review | eng |
dcterms.references | Garleanu, N. Pedersen, L. and Poteshman, A. (2009) Demand-based option pricing. Review of Financial Studies, Vol 22, pp. 4259-99. | eng |
dcterms.references | Vladyslav, S. and Turner, G. (2018) The equity market turbulence-The role of Exchange traded volatility products, Volatility is back. Bank for International Settlements BIS Quarterly Review | eng |
dcterms.references | Bekaert, G. Hoerova, M. and Lo Duca, M. (2013) Risk, uncertainty and monetary policy. Journal of Monetary Economics, Vol 60, pp. 771–88. | eng |
dcterms.references | Black, F. (1976) Studies of stock price volatility changes. Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economic Statistics Section 1976, pp 177-81. | eng |
dcterms.references | Pindyck, R.(1984) Risk, inflationand the stock market. American Economic Review, Vol 74, pp 335- 51. | eng |
dcterms.references | Shin, H S. (2010) Risk and liquidity, Oxford University Press, Clarendon Lectures in Finance. Journal of Financial Intermediation 19: 418-437. | eng |
dcterms.references | Adrian, T. and Boyarchenko, N. (2012) Intermediary leverage cycles and financial stability; Federal Reserve Bank of New York, Staff Reports, no 576. | eng |
dcterms.references | Borio, C. and Drehmann, M. (2009) Towards an operational framework for financial stability: “fuzzy” measurement and its consequences. Bank for International Settlements BIS working paper no 284 | eng |
dcterms.references | Miyajima, K. and Shim, I. (2014) Asset managers in emerging market economies. Bank for International Settlements BIS Quarterly Review, pp 19-34 | eng |
dcterms.references | Officer, R.R. (1973) The variability of the market factor of the New York Stock Exchange. The Journal of Business, Vol 46, pp. 434–53. | eng |
dcterms.references | Schwert, G.W. (1989) Why does stock market volatility change over time?. The Journal of Finance, Vol XLIV, No 5 | eng |
dcterms.references | Parkinson, M. (1980) The extreme value method for estimating the variance of the rate of return. Journal of Business, Vol 53, pp 61–65. | eng |
dcterms.references | Yin, L. (2015) Investigating robust estimation and forecasting of volatilities of futures with interquartile range models. Journal of Finance and Economics, Vol 3, pp 1-10. | eng |
dcterms.references | Chou, R. Y. (2005) Forecasting financial volatilities with extreme values: The Conditional Autorregresive Range (CARR) model, Vol 37, issue 3, pp 567-82. | eng |
dcterms.references | Tan, S. Aur, k. Chan, J. Ng, K. and Mohamed, I. (2019) Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data, The North American Journal of Economics and Finance, Vol 47, pp 537-51. | eng |
dcterms.references | Andersen, T. Bollerslev, T. and Meddahi, N. (2004) Analytical Evaluation of Volatility Forecasts, International Economic Review , Vol 45, pp 1079-1110. | eng |
dcterms.references | Baker, S. Bloom, N. and Davis, S.J. (2015) Measuring economic policy uncertainty, National Bureau of Economic Research, No 21633. | eng |
dcterms.references | Tobback, E. Naudts, H. Daelemans, W. Junqé de Fortuny, E. and Martens, D. (2018) Belgian economic policy uncertainty index: Improvement through text mining, International Journal of Forecasting, Elsevier, Vol 34, pp 355-65. | eng |
dcterms.references | Whaley, R. (2009) Understanding the VIX, The Journal of Portafolio Management. 35, pp 98–1 | eng |
dcterms.references | Carr, P. and Wu, L. (2006) A tale of two indices. The Journal of Derivatives 13, pp 13–29. | eng |
dcterms.references | Gonzalez, M. (2015) Model Free Volatility indexes in the financial literature: A Review. International Review of Economics and Finance, Elsevier, Vol 40, pp 141-59. | eng |
dcterms.references | Peng, Y. and Lon NG, W. (2012) Analysing financial contagion and asymmetric market dependence with volatily índices via copulas, Annals of Finance, Vol 8, Issue 1, pp 49-74. | eng |
dcterms.references | Bekaert, G. Hoerova, M. and Lo Duca, M. (2013) Risk, uncertainty and monetary policy. Journal of Monetary Economics, Vol 60, pp 771–88. | eng |
dcterms.references | Zhang, K. and Chan, L. (2009) Efficient factor GARCH models and factor-DCC models. Quantitative Finance, Vol 9, pp 71–91. | eng |
dcterms.references | Stock, J. and Watson, M. (2002) Forecasting using principal components from a large number of predictor. Journal of the American Statistical Association, Vol 97, No 460, pp 1167-79. | eng |
dcterms.references | Jiang, G. Konstantinidi, E. and Skiadopoulus, G. (2012) Volatility spillovers and the effect of news announcements. Journal of Banking and Finance, Elsevier, Vol 36, pp 2260-73. | eng |
dcterms.references | Kenourgios, D. (2014) On financial contagion and implied market volatility. International Review of Financial Analysis, Vol 34, pp 21-30. | eng |
dcterms.references | Sensoy, A. and Omole, J. (2018) Implied Volatility Indices: A Review and Extension in the Turkish Case. International Review of Financial Analysis, Vol 60, pp 151-61. | eng |
dcterms.references | De la Fuente, S (2011) Análisis Componentes Principales, Facultad Ciencias Económicas y empresariales, Universidad Autónoma de Madrid 2011. | spa |
dcterms.references | Peres-Neto, P. Jackson, D. and Somers, K. (2005) How many principal components? Stopping rules for determining the number of non trivial axes revisited. Computational Statistics and Data analysis, Vol 49, pp 974-97. | eng |
dcterms.references | Balacco, H. (1986) Algunas consideraciones sobre la definición de causalidad de Granger en el análisis econométrico, Económica, Vol 32, No 2, pp 207-55. | spa |
dcterms.references | Montero, R. (2013) Test de Causalidad. Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España | spa |
dcterms.references | Schwert, G. (1983), Size and stock returns, and other empirical regularities, Journal of Finance Economics, Vol 12, issue 1,pp 1-158 | eng |
dcterms.references | Engle, R. F., and Manganelli, S. (2004) CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, V 22, pp367–81. | eng |
dcterms.references | Gaviria, C. (2016) Regresión por Mínimos Cuadrados Parciales PLS aplicada a datos variedad Valuados. Universidad Nacional de Colombia. | spa |
dcterms.references | Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, V 31, pp 307–27. | eng |
dcterms.references | Forni, M. Hallin, M. Lippi, M y Reichlin, L. (2000) The Generalized Dynamic-Factor Model: Identification and Estimation. Review of Economics and Statistics, V 82, pp 540–54. | eng |
dcterms.references | Fernandez, F.J. (1997) A Dinamic Factor Model For Economic Time Series. Kybernetika, V 33, pp 583– 606. | eng |
dcterms.references | Doz, C. Giannone, D. y Reichlin, L. (2011) A two steep estimator for large approximate Dynamic Factor Models based on Kalman filtering. Journal of econometrics, V 164, pp 188–205 | eng |
dcterms.references | Bai, Z. Wong, W y Zhang, B. (2010) Multivariate linear and nonlinear causality test. Mathematics and Computers in Simulation, V 81, pp 5–17. | eng |
dcterms.references | Hiemstra, C. y Jones, JD. (1994) Testing for lienar and nonlinear Granger causality in the stock Price -volume relation. Journal of Finance, V 49, pp 1639–64. | eng |
dcterms.references | Baek, E.G. y Brock, W.A. (1992) A general test for nonlinear Granger causality: bivariate model. Korea Development Institute. | eng |