Mostrar el registro sencillo del ítem

Evaluación de pseudomonas fluorescens y bacillus amyloliquefaciens como bacterias promotoras de crecimiento en plantulas de banano cv. Williams

dc.contributor.advisorRodríguez Villamizar, Fernando
dc.contributor.advisorRodríguez Villamizar, Fernando
dc.contributor.authorGámez Carrillo, Rocío Margarita
dc.contributor.authorGámez Carrillo, Rocío Margarita
dc.date.accessioned2019-08-21T14:00:01Z
dc.date.accessioned2019-08-21T14:00:01Z
dc.date.available2019-08-21T14:00:01Z
dc.date.available2019-08-21T14:00:01Z
dc.date.issued2019-06-14
dc.date.issued2019-06-14
dc.identifier.urihttp://hdl.handle.net/10818/36738
dc.identifier.urihttp://hdl.handle.net/10818/36738
dc.description142 páginases_CO
dc.description142 páginases_CO
dc.description.abstractLas rizobacterias promotoras del crecimiento vegetal (PGPR), por sus siglas en inglés “Plant Growth Promoter Rhizobacteria”, son bacterias benéficas que tienen la capacidad de colonizar las raíces y estimular el crecimiento de la planta. La actividad de las PGPR se ha reportado para las cepas pertenecientes a los géneros Azoarcus, Azospirillum, Azotobacter, Arthrobacter, Bacillus, Clostridium, Enterobacter, Gluconobacter, Pseudomonas y Serratia (Kloeppe et al. 1999; Somers et al. 2004). La promoción de crecimiento de plantas puede generarse a través de interacciones directa de los microbios benéficos y la planta huésped e indirectamente por medio de su actividad antagonista contra patógenos de la planta. Con base en estas benéficas interacciones planta-microorganismo, es posible desarrollar inoculantes microbianos para su utilización en biotecnología agrícola. Dependiendo de su modo de acción y efectos, estos productos pueden ser utilizados como biofertilizantes, fitoestimuladoras y biopesticidas. En la actualidad hay evidencias de aumento del mercado de inoculantes en todo el mundo, con una tasa de crecimiento anual del 10% (Vejan et al. 2016). En este trabajo de investigación se describen las principales interacciones encontradas entre los microorganismos Pseudomonas fluorescens Ps006, Bacillus amyloliquefaciens Bs006 y plántulas de banano cv. Williams.es_CO
dc.description.abstractLas rizobacterias promotoras del crecimiento vegetal (PGPR), por sus siglas en inglés “Plant Growth Promoter Rhizobacteria”, son bacterias benéficas que tienen la capacidad de colonizar las raíces y estimular el crecimiento de la planta. La actividad de las PGPR se ha reportado para las cepas pertenecientes a los géneros Azoarcus, Azospirillum, Azotobacter, Arthrobacter, Bacillus, Clostridium, Enterobacter, Gluconobacter, Pseudomonas y Serratia (Kloeppe et al. 1999; Somers et al. 2004). La promoción de crecimiento de plantas puede generarse a través de interacciones directa de los microbios benéficos y la planta huésped e indirectamente por medio de su actividad antagonista contra patógenos de la planta. Con base en estas benéficas interacciones planta-microorganismo, es posible desarrollar inoculantes microbianos para su utilización en biotecnología agrícola. Dependiendo de su modo de acción y efectos, estos productos pueden ser utilizados como biofertilizantes, fitoestimuladoras y biopesticidas. En la actualidad hay evidencias de aumento del mercado de inoculantes en todo el mundo, con una tasa de crecimiento anual del 10% (Vejan et al. 2016). En este trabajo de investigación se describen las principales interacciones encontradas entre los microorganismos Pseudomonas fluorescens Ps006, Bacillus amyloliquefaciens Bs006 y plántulas de banano cv. Williams.es_CO
dc.formatapplication/pdfes_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectRizobacteriaes_CO
dc.subjectRizobacteriaes_CO
dc.subjectPlántulases_CO
dc.subjectPlántulases_CO
dc.subjectNutrientes de las plantases_CO
dc.subjectNutrientes de las plantases_CO
dc.subjectFertilidad del sueloes_CO
dc.subjectFertilidad del sueloes_CO
dc.titleEvaluación de pseudomonas fluorescens y bacillus amyloliquefaciens como bacterias promotoras de crecimiento en plantulas de banano cv. Williamses_CO
dc.titleEvaluación de pseudomonas fluorescens y bacillus amyloliquefaciens como bacterias promotoras de crecimiento en plantulas de banano cv. Williamses_CO
dc.typedoctoralThesises_CO
dc.typedoctoralThesises_CO
dc.publisher.programDoctorado en Biocienciases_CO
dc.publisher.programDoctorado en Biocienciases_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local273232
dc.identifier.local273232
dc.identifier.localTE10258
dc.identifier.localTE10258
dc.type.hasVersionpublishedVersiones_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeDoctor en Biocienciases_CO
dc.creator.degreeDoctor en Biocienciases_CO
dcterms.referencesAhemad, M. and Khan, M.S. (2012) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi journal of biological sciences 19, 451-459.eng
dcterms.referencesAhemad, M. and Kibret, M. (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science 26, 1-20.eng
dcterms.referencesAkhgar, A., Arzanlou, M., Bakker, P. and Hamidpour, M. (2014) Characterization of 1-aminocyclopropane-1- carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24, 461-468.eng
dcterms.referencesAkhtar, A., Hisamuddin, R.M. and Abbasi, S.R. (2012) Plant growth promoting Rhizobacteria: an overview. J Nat Prod Plant Resour 2, 19-31.eng
dcterms.referencesAlikhani, H., Saleh-Rastin, N. and Antoun, H. (2007) Phosphate solubilization activity of rhizobia native to Iranian soils. In First international Meeting on microbial phosphate solubilization. pp.35-41: Springer.eng
dcterms.referencesAlquéres, S., Meneses, C., Rouws, L., Rothballer, M., Baldani, I., Schmid, M. and Hartmann, A. (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Molecular plant-microbe interactions 26, 937-945.eng
dcterms.referencesAltschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25, 3389-3402.eng
dcterms.referencesAlvindia, D.G. and Natsuaki, K.T. (2009) Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Protection 28, 236-242.eng
dcterms.referencesAllard-Massicotte, R., Tessier, L., Lecuyer, F., Lakshmanan, V., Lucier, J.F., Garneau, D., Caudwell, L., Vlamakis, H., Bais, H.P. and Beauregard, P.B. (2016) Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors. mBio 7.eng
dcterms.referencesAmann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R. and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and environmental microbiology 56, 1919-1925.eng
dcterms.referencesArgent, G. (1976) Wild bananas of Papua New Guinea. Notes Roy Bot Gard Edinburgheng
dcterms.referencesArora, N.K., Tewari, S. and Singh, R. (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In Plant Microbe Symbiosis: Fundamentals and Advances. pp.411-449: Springereng
dcterms.referencesASBAMA (2016) Veinte años Trabajando por el Sector Bananero de la Región. Informe de Gestión 2015. Edición No 01 Marzo 2016.spa
dcterms.referencesAsif, M.H., Lakhwani, D., Pathak, S., Gupta, P., Bag, S.K., Nath, P. and Trivedi, P.K. (2014) Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC plant biology 14, 316.eng
dcterms.referencesAslantas, R., Cakmakci, R. and Sahin, F. (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia horticulturae 111, 371-377.eng
dcterms.referencesAttia, J., Ioannidis, J.P., Thakkinstian, A., McEvoy, M., Scott, R.J., Minelli, C., Thompson, J., Infante-Rivard, C. and Guyatt, G. (2009) How to use an article about genetic association: A: Background concepts. Jama 301, 74-81.eng
dcterms.referencesBacon, C.W. and Hinton, D.M. (2007) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In Plant-associated bacteria. pp.155-194: Springereng
dcterms.referencesBai, T.-T., Xie, W.-B., Zhou, P.-P., Wu, Z.-L., Xiao, W.-C., Zhou, L., Sun, J., Ruan, X.-L. and Li, H.-P. (2013) Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. Plos one 8, e73945.eng
dcterms.referencesBais, H.P., Fall, R. and Vivanco, J.M. (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant physiology 134, 307-319.eng
dcterms.referencesBak, S., Beisson, F., Bishop, G., Hamberger, B., Hofer, R., Paquette, S. and Werck-Reichhart, D. (2011) Cytochromes p450. The arabidopsis book 9, e0144eng
dcterms.referencesBakker, P.A., Doornbos, R.F., Zamioudis, C., Berendsen, R.L. and Pieterse, C.M. (2013) Induced systemic resistance and the rhizosphere microbiome. The plant pathology journal 29, 136.eng
dcterms.referencesBankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S. and Prjibelski, A.D. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology 19, 455-477.eng
dcterms.referencesBeauregard, P.B., Chai, Y., Vlamakis, H., Losick, R. and Kolter, R. (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences, 201218984.eng
dcterms.referencesBeneduzi, A., Ambrosini, A. and Passaglia, L.M. (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and molecular biology 35, 1044-1051.eng
dcterms.referencesBerg, G., Grube, M., Schloter, M. and Smalla, K. (2014) The plant microbiome and its importance for plant and human health. Frontiers in microbiology 5, 1.eng
dcterms.referencesBerger, G., Czarnocka, K., Cochard, B., Oszako, T. and Lefort, F. (2015) Biocontrol Endotherapy with Trichoderma spp. and Bacillus amyloliquefaciens against Phytophthora spp.: A Comparative Study with Phosphite Treatment on Quercus robur and Fagus sylvatica. Journal of Agricultural Science and Technology A 5, 428-439eng
dcterms.referencesBhardwaj, D., Ansari, M.W., Sahoo, R.K. and Tuteja, N. (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories 13, 66.eng
dcterms.referencesBhattacharyya, P.N. and Jha, D.K. (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28, 1327-1350.eng
dcterms.referencesBhattacharyya, P.N. and Jha, D.K. (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28, 1327-1350.eng
dcterms.referencesBlom, D., Fabbri, C., Connor, E., Schiestl, F., Klauser, D., Boller, T., Eberl, L. and Weisskopf, L. (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental microbiology 13, 3047-3058.eng
dcterms.referencesBogino, P.C., Oliva Mde, L., Sorroche, F.G. and Giordano, W. (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. International journal of molecular sciences 14, 15838-15859.eng
dcterms.referencesBosch, M. and Hepler, P.K. (2005) Pectin methylesterases and pectin dynamics in pollen tubes. The Plant Cell 17, 3219-3226.eng
dcterms.referencesBudiharjo, A., Chowdhury, S.P., Dietel, K., Beator, B., Dolgova, O., Fan, B., Bleiss, W., Ziegler, J., Schmid, M., Hartmann, A. and Borriss, R. (2014) Transposon mutagenesis of the plant-associated Bacillus amyloliquefaciens ssp. plantarum FZB42 revealed that the nfrA and RBAM17410 genes are involved in plantmicrobe-interactions. PLoS One 9, e98267.eng
dcterms.referencesCakmakcı, R., Kantar, F. and Sahin, F. (2001) Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. Journal of Plant Nutrition and Soil Science 164, 527-531.eng
dcterms.referencesCardinale, M. (2014) Scanning a microhabitat: plant-microbe interactions revealed by confocal laser microscopy. Frontiers in microbiology 5, 94.eng
dcterms.referencesCarreño, A. and Chaparro-Giraldo, A. (2013) Tolerancia al aluminio en especies vegetales: mecanismos y genes. Universitas Scientiarum 18.spa
dcterms.referencesCaviedes, D. (2010) Aislamiento y selección de Pseudomonas sp. y Bacillus sp., promotoras del crecimiento vegetal en cultivo de uchuva (Physalis peruviana L.) con actividad antagónica frente a Fusarium oxysporum. Trabajo de grado Microbiología Industrial Pontificia Universidad Javeriana 38p.spa
dcterms.referencesCleyet-Marel, J., Larcher, M., Bertrand, H., Rapior, S. and Pinochet, X. (2001) DIVERSITY IN PLANT GROWTH-PROMOTING RHIZOBACTERIA. Nitrogen assimilation by plants: physiological, biochemical and molecular aspects, 185.eng
dcterms.referencesCompant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C. and Ait Barka, E. (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71, 1685-1693.eng
dcterms.referencesCornelis, P. (2010) Iron uptake and metabolism in pseudomonads. Applied microbiology and biotechnology 86, 1637-1645.eng
dcterms.referencesCheesman, E. (1947) Classification of the Bananas: The Genus Musa L. Kew Bulletin, 106-117.eng
dcterms.referencesChen, Y., Cao, S., Chai, Y., Clardy, J., Kolter, R., Guo, J.h. and Losick, R. (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Molecular microbiology 85, 418- 430.eng
dcterms.referencesChou, Y.-M., Shen, F.-T., Chiang, S.-C. and Chang, C.-M. (2017) Functional diversity and dominant populations of bacteria in banana plantation soils as influenced by long-term organic and conventional farming. Applied soil ecology 110, 21-33.eng
dcterms.referencesDai, H., Cao, F., Chen, X., Zhang, M., Ahmed, I.M., Chen, Z.-H., Li, C., Zhang, G. and Wu, F. (2013) Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PloS one 8, e63428.eng
dcterms.referencesDANE (2015) Resultados del 3er Censo Nacional Agropecuario, Bogotá.spa
dcterms.referencesDANE (2016) Departamento Administrativo Nacional de Estadística.spa
dcterms.referencesDanhorn, T. and Fuqua, C. (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61, 401- 422.eng
dcterms.referencesdel Rosario Cappellari, L., Santoro, M.V., Reinoso, H., Travaglia, C., Giordano, W. and Banchio, E. (2015) Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita). Journal of chemical ecology 41, 149-158.eng
dcterms.referencesDownie, H., Holden, N., Otten, W., Spiers, A.J., Valentine, T.A. and Dupuy, L.X. (2012) Transparent soil for imaging the rhizosphere. PLoS One 7, e44276.eng
dcterms.referencesDraeger, C., Fabrice, T.N., Gineau, E., Mouille, G., Kuhn, B.M., Moller, I., Abdou, M.-T., Frey, B., Pauly, M. and Bacic, A. (2015) Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC plant biology 15, 155.eng
dcterms.referencesEgan, A.N., Schlueter, J. and Spooner, D.M. (2012) Applications of next-generation sequencing in plant biology. American journal of botany 99, 175-185.eng
dcterms.referencesEsitken, A., Karlidag, H., Ercisli, S. and Sahin, F. (2002) Effects of Foliar Application of Bacillus subtilis Osu142 on the Yield, Growth and Control of Shot-Hole Disease (Coryneum blight) of Apricot/Einfluß der Blattbehandlung mit Bacillus subtilis Osu-142 auf Ertrag, Wachstum und Kontrolle der Schrotschusskrankheit bei Aprikose. Gartenbauwissenschaft, 139-142.eng
dcterms.referencesEsitken, A., Karlidag, H., Ercisli, S., Turan, M. and Sahin, F. (2003) The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal of Agricultural Research 54, 377-380.eng
dcterms.referencesEsitken, A., Pirlak, L., Turan, M. and Sahin, F. (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Scientia Horticulturae 110, 324- 327.eng
dcterms.referencesEsitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M. and Gunes, A. (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124, 62-66.eng
dcterms.referencesFan, B., Chen, X.H., Budiharjo, A., Bleiss, W., Vater, J. and Borriss, R. (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of biotechnology 151, 303-311.eng
dcterms.referencesFAO (2014) Banana market review 2013-2014. In.: Food and Agriculture Organization of the United Nations.eng
dcterms.referencesFAO (2017) FAOSTAT.spa
dcterms.referencesFAO (2018) FAOSTAT.spa
dcterms.referencesFAO and IFA. (2002) Los Fertilizantes y su uso. Romaspa
dcterms.referencesFarag, M.A., Zhang, H. and Ryu, C.-M. (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. Journal of chemical ecology 39, 1007-1018.eng
dcterms.referencesFazli, M., Almblad, H., Rybtke, M.L., Givskov, M., Eberl, L. and Tolker-Nielsen, T. (2014) Regulation of biofilm formation in P seudomonas and B urkholderia species. Environmental microbiology 16, 1961-1981.eng
dcterms.referencesFeng, X., An, Y., Zheng, J., Sun, M. and Wang, L. (2016) Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1. Frontiers in plant science 7, 1615.eng
dcterms.referencesFox, A.R., Soto, G., Valverde, C., Russo, D., Lagares Jr, A., Zorreguieta, Á., Alleva, K., Pascuan, C., Frare, R. and Mercado-Blanco, J. (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environmental microbiology 18, 3522- 3534.eng
dcterms.referencesFoyer, C.H. and Noctor, G. (2011) Ascorbate and glutathione: the heart of the redox hub. Plant physiology 155, 2-18.eng
dcterms.referencesFriedman, L. and Kolter, R. (2004) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. Journal of bacteriology 186, 4457-4465.eng
dcterms.referencesFu, A., Liu, H., Yu, F., Kambakam, S., Luan, S. and Rodermel, S. (2012) Alternative oxidases (AOX1a and AOX2) can functionally substitute for plastid terminal oxidase in Arabidopsis chloroplasts. The Plant Cell, tpc. 112.096701.eng
dcterms.referencesGaby, J.C. and Buckley, D.H. (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PloS one 7, e42149.eng
dcterms.referencesGamez, R.M., Rodriguez, F., Bernal, J.F., Agarwala, R., Landsman, D. and Marino-Ramirez, L. (2015) Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006. Genome announcements 3.eng
dcterms.referencesGamez, R.M., Rodriguez, F., Ramirez, S., Gomez, Y., Agarwala, R., Landsman, D. and Marino-Ramirez, L. (2016) Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006. Genome announcements 4.eng
dcterms.referencesGarber, M., Grabherr, M.G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nature methods 8, 469.eng
dcterms.referencesGarcia-Seco, D., Zhang, Y., Gutierrez-Mañero, F.J., Martin, C. and Ramos-Solano, B. (2015) Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One 10, e0142639.eng
dcterms.referencesGhosh, R., Barman, S., Mukherjee, R. and Mandal, N.C. (2016) Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L.(Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiological research 183, 80-91.eng
dcterms.referencesGlick, B.R. (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012.eng
dcterms.referencesGulledge, A.A., Roberts, A.D., Vora, H., Patel, K. and Loraine, A.E. (2012) Mining Arabidopsis thaliana RNAseq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a. American journal of botany 99, 219-231.eng
dcterms.referencesGupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. and Singh, V. (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7, 096-102.eng
dcterms.referencesGupta, N., Sabat, J., Parida, R. and Kerkatta, D. (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Botanica Croatica 66, 197-204.eng
dcterms.referencesHatch, A.C., Fisher, J.S., Tovar, A.R., Hsieh, A.T., Lin, R., Pentoney, S.L., Yang, D.L. and Lee, A.P. (2011) 1- Million droplet array with wide-field fluorescence imaging for digital PCR. Lab on a chip 11, 3838-3845.eng
dcterms.referencesHeffer, P. and Prud’homme, M. (2015) Fertilizer Outlook 2015-2019. In 83rd IFA Annual Conference. Istanbul, May.eng
dcterms.referencesHeitz, T., Widemann, E., Lugan, R., Miesch, L., Ullmann, P., Désaubry, L., Holder, E., Grausem, B., Kandel, S. and Miesch, M. (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of the plant hormone jasmonoyl-isoleucine for catabolic turnover. Journal of Biological Chemistry, jbc. M111. 316364.eng
dcterms.referencesHenry, I.M., Carpentier, S.C., Pampurova, S., Van Hoylandt, A., Panis, B., Swennen, R. and Remy, S. (2011) Structure and regulation of the Asr gene family in banana. Planta 234, 785-798.eng
dcterms.referencesHernández-Calderón, E., Aviles-Garcia, M.E., Castulo-Rubio, D.Y., Macías-Rodríguez, L., Ramírez, V.M., Santoyo, G., López-Bucio, J. and Valencia-Cantero, E. (2018) Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant molecular biology 96, 291-304.eng
dcterms.referencesHernández-Rodríguez, A., Heydrich-Pérez, M., Velázquez-del Valle, M.G. and Hernández-Lauzardo, A.N. (2006) Perspectivas del empleo de rizobacterias como agentes de control biológico en cultivos de importancia económica. Revista Mexicana de Fitopatología 24.eng
dcterms.referencesHindson, B.J., Ness, K.D., Masquelier, D.A., Belgrader, P., Heredia, N.J., Makarewicz, A.J., Bright, I.J., Lucero, M.Y., Hiddessen, A.L. and Legler, T.C. (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical chemistry 83, 8604-8610.eng
dcterms.referencesHol, W., Bezemer, T.M. and Biere, A. (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in plant science 4, 81.eng
dcterms.referencesHuggett, J.F., Foy, C.A., Benes, V., Emslie, K., Garson, J.A., Haynes, R., Hellemans, J., Kubista, M., Mueller, R.D., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., Wittwer, C.T. and Bustin, S.A. (2013) The digital MIQE guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments. Clinical chemistry 59, 892-902.eng
dcterms.referencesIPGRI-INIBAP/CIRAD (1996) Descriptores para el banano (Muss spp.) Instituto International de Recursos Fitogeneticos, Roma, Italia; Red International para el Mejoramiento del Banano y el Platano, Montpellier, Francis; y el Centre de cooperation internationale en recherche agronomique pour le developpement, Montpellier, Francis.eng
dcterms.referencesIslam, S., Akanda, A.M., Prova, A., Islam, M.T. and Hossain, M.M. (2015) Isolation and Identification of Plant Growth Promoting Rhizobacteria from Cucumber Rhizosphere and Their Effect on Plant Growth Promotion and Disease Suppression. Front Microbiol 6, 1360.eng
dcterms.referencesIslam, S., Akanda, A.M., Prova, A., Islam, M.T. and Hossain, M.M. (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in microbiology 6, 1360.eng
dcterms.referencesJing, F., Cantu, D.C., Tvaruzkova, J., Chipman, J.P., Nikolau, B.J., Yandeau-Nelson, M.D. and Reilly, P.J. (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC biochemistry 12, 44.eng
dcterms.referencesKaliyappan, R., Viswanathan, S., Suthanthiram, B., Subbaraya, U., Somasundram, S.M. and Muthu, M. (2016) Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae. PloS one 11, e0162013.eng
dcterms.referencesKang, B.G., Kim, W.T., Yun, H.S. and Chang, S.C. (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports 4, 179-183.eng
dcterms.referencesKang, S.-M., Khan, A.L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., Hamayun, M. and Lee, I.-J. (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions 9, 673-682.eng
dcterms.referencesKarlidag, H., Esitken, A., Turan, M. and Sahin, F. (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae 114, 16-20.eng
dcterms.referencesKarpova, O.V., Kuzmin, E.V., Elthon, T.E. and Newton, K.J. (2002) Differential expression of alternative oxidase genes in maize mitochondrial mutants. The Plant Cell 14, 3271-3284.eng
dcterms.referencesKhan, M.S., Zaidi, A., Ahemad, M., Oves, M. and Wani, P.A. (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Archives of Agronomy and Soil Science 56, 73-98.eng
dcterms.referencesKim, K.W. (2016) High-resolution imaging of the microbial cell surface. Journal of microbiology 54, 703-708.eng
dcterms.referencesKimani, V.N., Chen, L., Liu, Y., Raza, W., Zhang, N., Mungai, L.K., Shen, Q. and Zhang, R. (2016) Characterization of extracellular polymeric substances of Bacillus amyloliquefaciens SQR9 induced by root exudates of cucumber. Journal of basic microbiology 56, 1183-1193.eng
dcterms.referencesKisiel, A. and Kepczynska, E. (2016) Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta 243, 1169-1189.eng
dcterms.referencesKloeppe, J., Rodriguez-Kabana, R., Zehnder, A., Murphy, J., Sikora, E. and Fernandez, C. (1999) Plant rootbacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology 28, 21-26.eng
dcterms.referencesKloepper, J., Rodriguez-Kabana, R., Zehnder, A., Murphy, J., Sikora, E. and Fernandez, C. (1999) Plant rootbacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology 28, 21-26.eng
dcterms.referencesKloepper, J.W. (1992) Plant growth-promoting rhizobacteria as biological control agents. Soil microbial ecology: applications in agricultural and environmental management, 255-274.eng
dcterms.referencesKloepper, J.W. and Bay-Peterson, J. (1991) Plant growth-promoting rhizobacteria as biological control agents of soilborne diseases.eng
dcterms.referencesKnoth, C., Salus, M.S., Girke, T. and Eulgem, T. (2009) The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant physiology 150, 333-347.eng
dcterms.referencesKobayashi, K. (2007) Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. Journal of bacteriology 189, 4920-4931.eng
dcterms.referencesKoberl, M., White, R.A., 3rd, Erschen, S., El-Arabi, T.F., Jansson, J.K. and Berg, G. (2015) Draft Genome Sequence of Streptomyces sp. Strain Wb2n-11, a Desert Isolate with Broad-Spectrum Antagonism against Soilborne Phytopathogens. Genome announcements 3.eng
dcterms.referencesKrober, M., Verwaaijen, B., Wibberg, D., Winkler, A., Puhler, A. and Schluter, A. (2016) Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Journal of biotechnology 231, 212-223.eng
dcterms.referencesKumar, P. and Dubey, R. (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Pers Appl Microbiol 1, 6-38.eng
dcterms.referencesLanteigne, C., Gadkar, V.J., Wallon, T., Novinscak, A. and Filion, M. (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102, 967-973eng
dcterms.referencesLee, B., Farag, M.A., Park, H.B., Kloepper, J.W., Lee, S.H. and Ryu, C.-M. (2012) Induced resistance by a longchain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PloS one 7, e48744.eng
dcterms.referencesLi, C., Lin, F., An, D., Wang, W. and Huang, R. (2018a) Genome Sequencing and Assembly by Long Reads in Plants. Genes 9, 6.eng
dcterms.referencesLi, Q., Li, Z., Li, X., Xia, L., Zhou, X., Xu, Z., Shao, J., Shen, Q. and Zhang, R. (2018b) FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9. Research in microbiology 169, 166-176.eng
dcterms.referencesLiu, D., Lian, B. and Dong, H. (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiology Journal 29, 413-421.eng
dcterms.referencesLiu, T., Newton, L., Liu, M.-J., Shiu, S.-H. and Farré, E.M. (2015) A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis. Plant physiology, pp. 01562.02015.eng
dcterms.referencesLiu, W., Wang, Q., Hou, J., Tu, C., Luo, Y. and Christie, P. (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Scientific reports 6, 26710.eng
dcterms.referencesLo Piccolo, S., Ferraro, V., Alfonzo, A., Settanni, L., Ercolini, D., Burruano, S. and Moschetti, G. (2010) Presence of endophytic bacteria in Vitis vinifera leaves as detected by fluorescence in situ hybridization. Annals of microbiology 60, 161-167eng
dcterms.referencesLouie, G.V., Bowman, M.E., Tu, Y., Mouradov, A., Spangenberg, G. and Noel, J.P. (2010) Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. The Plant Cell, tpc. 110.077578.eng
dcterms.referencesLu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X. and Han, B. (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome research 20, 1238-1249.eng
dcterms.referencesMa, Y., Jiao, J., Fan, X., Sun, H., Zhang, Y., Jiang, J. and Liu, C. (2017) Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars. Frontiers in plant science 7, 2068.eng
dcterms.referencesMaldonado-Borges, J.I., Ku-Cauich, J.R. and Escobedo-Graciamedrano, R.M. (2013) Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome. TheScientificWorldJournal 2013, 535737.eng
dcterms.referencesMann, E.E. and Wozniak, D.J. (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS microbiology reviews 36, 893-916.eng
dcterms.referencesManz, W., Amann, R., Ludwig, W., Wagner, M. and Schleifer, K.-H. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Systematic and applied microbiology 15, 593-600.eng
dcterms.referencesMarguerat, S. and Bähler, J. (2010) RNA-seq: from technology to biology. Cellular and molecular life sciences 67, 569-579.eng
dcterms.referencesMeena, K.K., Sorty, A.M., Bitla, U.M., Choudhary, K., Gupta, P., Pareek, A., Singh, D.P., Prabha, R., Sahu, P.K. and Gupta, V.K. (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in plant science 8, 172.eng
dcterms.referencesMeier, H., Amann, R., Ludwig, W. and Schleifer, K.H. (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+ C content. Systematic and Applied Microbiology 22, 186-196.eng
dcterms.referencesMeneses, C.H., Rouws, L.F., Simoes-Araujo, J.L., Vidal, M.S. and Baldani, J.I. (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Molecular plant-microbe interactions : MPMI 24, 1448-1458.eng
dcterms.referencesMercado-Blanco, J., Alos, E., Rey, M.D. and Prieto, P. (2016) Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS microbiology ecology 92.eng
dcterms.referencesMetzker, M.L. (2010) Sequencing technologies—the next generation. Nature reviews genetics 11, 31.eng
dcterms.referencesMia, M. (2002) Beneficial effects of rhizobacterial inoculation on nutrient uptake, growth and yield of banana (Musa spp.): Ph. D. thesis, Faculty of Agriculture, UPM, Malaysia.eng
dcterms.referencesMia, M., Shamsuddin, Z., Zakaria, W. and Marziah, M. (2000) Growth and physiological attributes of hydroponically-grown bananas inoculated with plant growth promoting rhizobacteria. Transac. Malaysian Soc. Plant Physiol 9, 324-327.eng
dcterms.referencesMia, M.B., Shamsuddin, Z. and Mahmood, M. (2010a) Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol 12, 459-467.eng
dcterms.referencesMia, M.B., Shamsuddin, Z., Wahab, Z. and Marziah, M. (2010b) Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv.‘Berangan’). Scientia horticulturae 126, 80-87.eng
dcterms.referencesMicheli, F. (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in plant science 6, 414-419.eng
dcterms.referencesMiransari, M. and Smith, D. (2014) Plant hormones and seed germination. Environmental and Experimental Botany 99, 110-121.eng
dcterms.referencesMochida, K. and Shinozaki, K. (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant and Cell Physiology 52, 2017-2038.eng
dcterms.referencesMohammad, A.H., Rahmani, H.A., Ardakani, M.R., Paknejad, F., Habibi, D. and Mafakheri, S. (2012) Effect of Pseudomonas fluorescent on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annals of Biological Research 3, 1054-1062.eng
dcterms.referencesMohanta, T.K., Park, Y.-H. and Bae, H. (2016) Novel genomic and evolutionary insight of WRKY transcription factors in plant lineage. Scientific reports 6, 37309.eng
dcterms.referencesMoter, A. and Göbel, U.B. (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms: Elseviereng
dcterms.referencesMousa, W.K., Shearer, C., Limay-Rios, V., Ettinger, C.L., Eisen, J.A. and Raizada, M.N. (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nature microbiology 1, 16167.eng
dcterms.referencesMurashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15, 473-497.eng
dcterms.referencesMutasa-Gottgens, E.S., Joshi, A., Holmes, H.F., Hedden, P. and Gottgens, B. (2012) A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses. BMC genomics 13, 99.eng
dcterms.referencesNewman, M.-A., Sundelin, T., Nielsen, J.T. and Erbs, G. (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in plant science 4, 139.eng
dcterms.referencesNivya, R. (2015) A study on plant growth promoting activity of the endophytic bacteria isolated from the root nodules of Mimosa Pudica plant. Int J Innov Res Sci Eng Tech 4, 6959-6968.eng
dcterms.referencesOrhan, E., Esitken, A., Ercisli, S., Turan, M. and Sahin, F. (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae 111, 38- 43.eng
dcterms.referencesOsorio, D. and Zapata, H. (2005) Pasado y futuro de la química y fertilidad del suelo. Suelos Ecuatoriales (Colombia) v 35 (no 1) p 103-1170562-5351.spa
dcterms.referencesOverbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B. and Shukla, M. (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic acids research 42, D206-D214.eng
dcterms.referencesPalmqvist, N., Bejai, S., Meijer, J., Seisenbaeva, G.A. and Kessler, V.G. (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Scientific reports 5, 10146.eng
dcterms.referencesParmar, P. and Sindhu, S. (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology research 3, 25-31.eng
dcterms.referencesParnell, J.J., Berka, R., Young, H.A., Sturino, J.M., Kang, Y., Barnhart, D.M. and DiLeo, M.V. (2016) From the Lab to the Farm: An Industrial Perspective of Plant Beneficial Microorganisms. Front Plant Sci 7, 1110.eng
dcterms.referencesPieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C. and Bakker, P.A. (2014) Induced systemic resistance by beneficial microbes. Annual review of phytopathology 52.eng
dcterms.referencesPirlak, L., Turan, M., Sahin, F. and Esitken, A. (2007) Floral and foliar application of plant growth promoting rhizobacteria (PGPR) to apples increases yield, growth, and nutrient element contents of leaves. Journal of sustainable agriculture 30, 145-155.eng
dcterms.referencesPosada, L.F., Ramírez, M., Ochoa-Gómez, N., Cuellar-Gaviria, T.Z., Argel-Roldan, L.E., Ramírez, C.A. and Villegas-Escobar, V. (2016) Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Scientia Horticulturae 212, 81-90.eng
dcterms.referencesPrieto, P., Schilirò, E., Maldonado-González, M.M., Valderrama, R., Barroso-Albarracín, J.B. and MercadoBlanco, J. (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microbial ecology 62, 435-445.eng
dcterms.referencesPrince, S.J., Song, L., Qiu, D., dos Santos, J.V.M., Chai, C., Joshi, T., Patil, G., Valliyodan, B., Vuong, T.D. and Murphy, M. (2015) Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean. BMC genomics 16, 132.eng
dcterms.referencesPua, E.C. and Lee, Y.C. (2003) Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams). Gene 305, 133-140.eng
dcterms.referencesQin, Y., Han, Y., Shang, Q. and Li, P. (2015a) Complete genome sequence of Bacillus amyloliquefaciens LH15, a plant growth promoting rhizobacteria isolated from cucumber seedling substrate. Journal of biotechnology 200, 59-60.eng
dcterms.referencesQin, Y., Han, Y., Yu, Y., Shang, Q., Zhang, B. and Li, P. (2015b) Complete genome sequence of Bacillus amyloliquefaciens L-S60, a plant growth-promoting and antifungal bacterium. Journal of biotechnology 212, 67-68.eng
dcterms.referencesRada, L. (2009) Selección de Pseudomonas spp, aisladas de las rizobacterias de Fique (Furcrae sp) por su potencial en la promoción de crecimiento de diferentes especies vegetales. In Facultad de Ciencias: Pontificia Universidad Javeriana.spa
dcterms.referencesRamey, B.E., Matthysse, A.G. and Fuqua, C. (2004) The FNR-type transcriptional regulator SinR controls maturation of Agrobacterium tumefaciens biofilms. Molecular microbiology 52, 1495-1511.eng
dcterms.referencesRaupach, G.S. and Kloepper, J.W. (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88, 1158-1164.eng
dcterms.referencesRaza, W., Ling, N., Yang, L., Huang, Q. and Shen, Q. (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Scientific reports 6, 24856.eng
dcterms.referencesRivera-Cruz, M.d.C., Narcía, A.T., Ballona, G.C., Kohler, J., Caravaca, F. and Roldan, A. (2008) Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biology and Biochemistry 40, 3092-3095.eng
dcterms.referencesRodríguez-Romero, A.S., Guerra, M.S.P. and Jaizme-Vega, M.D.C. (2005) Effect of arbuscular mycorrhizal fungi and rhizobacteria on banana growth and nutrition. Agronomy for sustainable development 25, 395-399.eng
dcterms.referencesRoppolo, D., Boeckmann, B., Pfister, A., Boutet, E., Rubio, M.C., Dénervaud-Tendon, V., Vermeer, J.E., Gheyselinck, J., Xenarios, I. and Geldner, N. (2014) Functional and evolutionary analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN family. Plant physiology, pp. 114.239137.eng
dcterms.referencesRossmann, B., Müller, H., Smalla, K., Mpiira, S., Tumuhairwe, J.B., Staver, C. and Berg, G. (2012) Bananaassociated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae. Applied and environmental microbiology, AEM. 00772-00712.eng
dcterms.referencesRowe, H.C., Walley, J.W., Corwin, J., Chan, E.K.-F., Dehesh, K. and Kliebenstein, D.J. (2010) Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS pathogens 6, e1000861.eng
dcterms.referencesRPSaPN, J. (2015) Molecular identification and characterization of rhizospheric bacteria for plant growth promoting ability. International Journal of Current Biotechnology 3(7):12-18.eng
dcterms.referencesRudrappa, T., Biedrzycki, M.L., Kunjeti, S.G., Donofrio, N.M., Czymmek, K.J., Pare, P.W. and Bais, H.P. (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative 131 & integrative biology 3, 130-138.eng
dcterms.referencesRudrappa, T., Quinn, W.J., Stanley-Wall, N.R. and Bais, H.P. (2007) A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Planta 226, 283-297.eng
dcterms.referencesSantopolo, S., Boccaccini, A., Lorrai, R., Ruta, V., Capauto, D., Minutello, E., Serino, G., Costantino, P. and Vittorioso, P. (2015) DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1. BMC Plant Biol 15, 72.eng
dcterms.referencesSaraf, M., Pandya, U. and Thakkar, A. (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological research 169, 18-29.eng
dcterms.referencesSastoque, E. (2009) Producción, caracterización y evaluación de la actividad biológica de biosurfactantes (Ramnolípidos) a partir rizobacterias de fique (Furcraea spp). Facultad de Ciencias Pontificia Universidad Javeriana Bogotá, Colombia.spa
dcterms.referencesSchneeberger, K. and Weigel, D. (2011) Fast-forward genetics enabled by new sequencing technologies. Trends in plant science 16, 282-288.eng
dcterms.referencesSharafzadeh, S. (2012) Effects of PGPR on growth and nutrients uptake of tomato. International Journal of Advances in Engineering & Technology 2, 27.eng
dcterms.referencesSharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A. (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2, 587.eng
dcterms.referencesShen, M., Kang, Y.J., Wang, H.L., Zhang, X.S. and Zhao, Q.X. (2012) Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. The Journal of general and applied microbiology 58, 253-262.eng
dcterms.referencesShen, Z., Wang, B., Lv, N., Sun, Y., Jiang, X., Li, R., Ruan, Y. and Shen, Q. (2015) Effect of the combination of bio-organic fertiliser with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease, crop production and banana rhizosphere culturable microflora. Biocontrol science and technology 25, 716-731.eng
dcterms.referencesShilev, S. (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In Plant Microbe Symbiosis: Fundamentals and Advances. pp.147-167: Springer.eng
dcterms.referencesShu, Y., Du, Y. and Wang, J. (2011) Molecular characterization and expression patterns of Spodoptera litura heat shock protein 70/90, and their response to zinc stress. Comparative biochemistry and physiology Part A, Molecular & integrative physiology 158, 102-110.eng
dcterms.referencesSimmonds, N.W. and Shepherd, K. (1955) The taxonomy and origins of the cultivated bananas. Botanical Journal of the Linnean Society 55, 302-312.eng
dcterms.referencesSoares, M.A., Li, H.-Y., Bergen, M., Da Silva, J.M., Kowalski, K.P. and White, J.F. (2015) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.). Plant and soil 405, 107-123.eng
dcterms.referencesSomers, E., Vanderleyden, J. and Srinivasan, M. (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Critical reviews in microbiology 30, 205-240.eng
dcterms.referencesSouza, S.A., Xavier, A.A., Costa, M.R., Cardoso, A., Pereira, M.C. and Nietsche, S. (2013) Endophytic bacterial diversity in banana'Prata Anã'(Musa spp.) roots. Genetics and molecular biology 36, 252-264.eng
dcterms.referencesSpaepen, S. and Vanderleyden, J. (2011) Auxin and plant-microbe interactions. Cold Spring Harbor perspectives in biology 3, a001438.eng
dcterms.referencesStephanou, A. and Latchman, D.S. (2011) Transcriptional modulation of heat-shock protein gene expression. Biochemistry research international 2011.eng
dcterms.referencesStrickler, S.R., Bombarely, A. and Mueller, L.A. (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species1. American Journal of Botany 99, 257-266.eng
dcterms.referencesSubramanian, P., Mageswari, A., Kim, K., Lee, Y. and Sa, T. (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions 28, 1073-1081.eng
dcterms.referencesSutra, L., Risède, J.-M. and Gardan, L. (2000) Isolation of fluorescent pseudomonads from the rhizosphere of banana plants antagonistic towards root necrosing fungi. Letters in applied microbiology 31, 289-293.eng
dcterms.referencesTak, H., Negi, S. and Ganapathi, T.R. (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254, 803-816.eng
dcterms.referencesTan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q. and Xu, Y. (2016) Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and fertility of soils 52, 341- 351.eng
dcterms.referencesTaurian, T., Anzuay, M.S., Angelini, J.G., Tonelli, M.L., Ludueña, L., Pena, D., Ibáñez, F. and Fabra, A. (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant and Soil 329, 421-431.eng
dcterms.referencesTien, T., Gaskins, M. and Hubbell, D. (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology 37, 1016-1024.eng
dcterms.referencesTucker, G. (2004) Improving fruit and vegetable texture by genetic transformation. Texture in Foods 2, 321- 341.eng
dcterms.referencesUeda, Y., Siddique, S. and Frei, M. (2015) A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice. Plant physiology 169, 873-889.eng
dcterms.referencesVacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F. and Prigent-Combaret, C. (2013) Plant growth-promoting rhizobacteria and root system functioning. Frontiers in plant science 4, 356.eng
dcterms.referencesVan de Mortel, J.E., de Vos, R.C., Dekkers, E., Pineda, A., Guillod, L., Bouwmeester, K., van Loon, J.J., Dicke, M. and Raaijmakers, J.M. (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160, 2173-2188.eng
dcterms.referencesVan den Berg, N., Berger, D.K., Hein, I., Birch, P.R., Wingfield, M.J. and Viljoen, A. (2007) Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Molecular plant pathology 8, 333-341.eng
dcterms.referencesVanlerberghe, G.C. (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences 14, 6805-6847.eng
dcterms.referencesVejan, P., Abdullah, R., Khadiran, T., Ismail, S. and Nasrulhaq Boyce, A. (2016) Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules (Basel, Switzerland) 21.eng
dcterms.referencesWagg, C., Bender, S.F., Widmer, F. and van der Heijden, M.G. (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America 111, 5266-5270.eng
dcterms.referencesWalley, J.W., Kliebenstein, D.J., Bostock, R.M. and Dehesh, K. (2013) Fatty acids and early detection of pathogens. Current opinion in plant biology 16, 520-526eng
dcterms.referencesWallner, G., Amann, R. and Beisker, W. (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry: The Journal of the International Society for Analytical Cytology 14, 136-143.eng
dcterms.referencesWang, Y., Li, T., Meng, H. and Sun, X. (2005) Optimal and spatial analysis of hormones, degrading enzymes and isozyme profiles in tomato pedicel explants during ethylene-induced abscission. Plant growth regulation 46, 97-107.eng
dcterms.referencesWard, J.A., Ponnala, L. and Weber, C.A. (2012) Strategies for transcriptome analysis in nonmodel plants. American Journal of Botany 99, 267-276.eng
dcterms.referencesWei, Y., Hu, W., Xia, F., Zeng, H., Li, X., Yan, Y., He, C. and Shi, H. (2016) Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response. Scientific reports 6, 36864.eng
dcterms.referencesWelchen, E., Hildebrandt, T.M., Lewejohann, D., Gonzalez, D.H. and Braun, H.-P. (2012) Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1817, 990-1001.eng
dcterms.referencesWeng, J., Wang, Y., Li, J., Shen, Q. and Zhang, R. (2013) Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Applied microbiology and biotechnology 97, 8823- 8830.eng
dcterms.referencesWhitman, W.B., Goodfellow, M., Kämpfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-i. and Ludwig, W. (2012) Bergey's Manual of Systematic Bacteriology: The Actinobacteria: Springereng
dcterms.referencesXie, S.-S., Wu, H.-J., Zang, H.-Y., Wu, L.-M., Zhu, Q.-Q. and Gao, X.-W. (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Molecular Plant-Microbe Interactions 27, 655-663.eng
dcterms.referencesXue, C., Penton, C.R., Shen, Z., Zhang, R., Huang, Q., Li, R., Ruan, Y. and Shen, Q. (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Scientific reports 5, 11124.eng
dcterms.referencesYang, Q.-S., Wu, J.-H., Li, C.-Y., Wei, Y.-R., Sheng, O., Hu, C.-H., Kuang, R.-B., Huang, Y.-H., Peng, X.-X. and McCardle, J.A. (2012) Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Molecular & Cellular Proteomics, mcp. M112. 022079.eng
dcterms.referencesYe, L., Wang, B., Zhang, W., Shan, H. and Kong, H. (2016) Gains and Losses of Cis-regulatory Elements Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space, and Level of Expression and Regulation of One Paralog by the Other. Plant physiology 171, 1055-1069.eng
dcterms.referencesYen, S.-K., Chung, M.-C., Chen, P.-C. and Yen, H.E. (2001) Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. Plant physiology 127, 517-528. 213.Yockteng, R., Almeida, A.M., Yee, S., Andre, T., Hill, C. and Specht, C.D. (2013) A method for extracting highquality RNA from diverse plants for next-generation sequencing and gene expression analyses. Applications in plant sciences 1.eng
dcterms.referencesYoung, M.D., Wakefield, M.J., Smyth, G.K. and Oshlack, A. (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome biology 11, R14.eng
dcterms.referencesYuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J.M. and Shen, Q. (2015a) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific reports 5, 13438.eng
dcterms.referencesYuan, J., Zhang, N., Huang, Q., Raza, W., Li, R., Vivanco, J.M. and Shen, Q. (2015b) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5, 13438.eng
dcterms.referencesZenoni, S., Ferrarini, A., Giacomelli, E., Xumerle, L., Fasoli, M., Malerba, G., Bellin, D., Pezzotti, M. and Delledonne, M. (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152, 1787-1795.eng
dcterms.referencesZhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M.A., Ryu, C.-M., Allen, R. and Melo, I.S. (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839.eng
dcterms.referencesZhang, N., Wu, K., He, X., Li, S.-q., Zhang, Z.-h., Shen, B., Yang, X.-m., Zhang, R.-f., Huang, Q.-w. and Shen, Q.-r. (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and soil 344, 87-97.eng
dcterms.referencesZhang, N., Yang, D., Kendall, J.R., Borriss, R., Druzhinina, I.S., Kubicek, C.P., Shen, Q. and Zhang, R. (2016) Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats. Frontiers in microbiology 7, 2039.eng
dcterms.referencesZhang, N., Yang, D., Wang, D., Miao, Y., Shao, J., Zhou, X., Xu, Z., Li, Q., Feng, H., Li, S., Shen, Q. and Zhang, R. (2015a) Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC genomics 16, 685.eng
dcterms.referencesZhang, X., Davidson, E.A., Mauzerall, D.L., Searchinger, T.D., Dumas, P. and Shen, Y. (2015b) Managing nitrogen for sustainable development. Nature 528, 51.eng
dcterms.referencesZhao, L., Gao, L., Wang, H., Chen, X., Wang, Y., Yang, H., Wei, C., Wan, X. and Xia, T. (2013) The R2R3- MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Functional & integrative genomics 13, 75-98.eng
dcterms.referencesZhao, X., de Jong, A., Zhou, Z. and Kuipers, O.P. (2015) Complete genome sequence of Bacillus amyloliquefaciens strain BH072, isolated from honey. Genome announcements 3, e00098-00015.eng
dcterms.referencesZheng, C., Wang, Y., Ding, Z. and Zhao, L. (2016) Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis. Frontiers in plant science 7, 1858.eng
dcterms.referencesZhong, Q., Bhattacharya, S., Kotsopoulos, S., Olson, J., Taly, V., Griffiths, A.D., Link, D.R. and Larson, J.W. (2011) Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11, 2167- 2174.eng
dcterms.referencesZorrilla-Fontanesi, Y., Rouard, M., Cenci, A., Kissel, E., Do, H., Dubois, E., Nidelet, S., Roux, N., Swennen, R. and Carpentier, S.C. (2016) Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Scientific reports 6, 22583.eng
dcterms.referencesZouari, I., Jlaiel, L., Tounsi, S. and Trigui, M. (2016) Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological control 100, 54-62.eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International