Mostrar el registro sencillo del ítem

dc.contributor.authorSolano Charris, Elyn Lizeth
dc.contributor.authorPrins, Christian
dc.contributor.authorSantos, Andréa Cynthia
dc.date.accessioned06/12/2019 12:01
dc.date.available06/12/2019 12:01
dc.date.issued2015-07
dc.identifier.issn1568-4946
dc.identifier.otherhttps://reader.elsevier.com/reader/sd/pii/S1568494615002380?token=CB118E8C7A57D7A77B385154C853EA479850182765FE4BCCFCF2366C477A0ECE8419764F68AA49C7264AE1B0521DC3DE
dc.identifier.otherhttp://dx.doi.org/10.1016/j.asoc.2015.03.058
dc.identifier.urihttp://hdl.handle.net/10818/35846
dc.description14 páginases_CO
dc.description.abstractThe Capacitated Vehicle Routing Problem (CVRP) is extended here to handle uncertain arc costs without resorting to probability distributions, giving the Robust VRP (RVRP). The unique set of arc costs in the CVRP is replaced by a set of discrete scenarios. A scenario is for instance the travel time observed on each arc at a given traffic hour. The goal is to build a set of routes using the lexicographic min–max criterion: the worst cost over all scenarios is minimized but ties are broken using the other scenarios, from the worst to the best. This version of robust CVRP has never been studied before. A Mixed Integer Linear Program (MILP), two greedy heuristics, a local search and four metaheuristics are proposed: a Greedy Randomized Adaptive Search Procedure, an Iterated Local Search (ILS), a Multi-Start ILS (MS-ILS), and an MS-ILS based on Giant Tours (MS-ILS-GT) converted into feasible routes via a lexicographic splitting procedure. The greedy heuristics provide the other algorithms with good initial solutions. Tests on small instances (10–20 customers, 2–3 vehicles, 10–30 scenarios) show that the four metaheuristics retrieve all optima found by the MILP. On larger cases with 50–100 customers, 5–20 vehicles and 10–20 scenarios, MS-ILS-GT dominates the other approaches. As our algorithms share the same components (initial heuristic, local search), the positive contribution of using the giant tour approach is confirmed on the RVRP.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherApplied Soft Computinges_CO
dc.relation.ispartofseriesApplied Soft Computing 32 (2015) 518–531
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subject.otherVehicleroutingen
dc.subject.otherUncertain travel timesen
dc.subject.otherRobust optimizationen
dc.subject.otherGreedy randomized adaptive searchen
dc.subject.otherProcedureen
dc.subject.otherIterated local searchen
dc.subject.otherTour splittingen
dc.titleLocal search based metaheuristics for the robust vehicle routing problem with discrete scenariosen
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International