Mostrar el registro sencillo del ítem
Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles
dc.contributor.advisor | Valero Valdivieso, Manuel Fernando | |
dc.contributor.advisor | Díaz Barrera, Luis Eduardo | |
dc.contributor.author | Uscátegui Maldonado, Yomaira Lisnedy | |
dc.date.accessioned | 5/23/2019 8:42 | |
dc.date.available | 5/23/2019 8:42 | |
dc.date.issued | 2019-03-14 | |
dc.identifier.uri | http://hdl.handle.net/10818/35573 | |
dc.description | 121 páginas | es_CO |
dc.description.abstract | Los poliuretanos (PUs) son ampliamente utilizados en la preparación de dispositivos médicos debido a su biocompatibilidad, biodegradabilidad y no toxicidad cuando se comparan con otros polímeros [Park 2013]. Dentro de las aplicaciones como biomateriales de los PUs se encuentran: suturas, catéteres, corazón artificial, prótesis vasculares, recubrimientos para heridas y revestimiento compatible con la sangre [Rocco 2014]. La aplicación de PUs para una función específica dentro del cuerpo humano depende de propiedades mecánicas, de adhesión, de superficie, biodegradabilidad, entre otras [Chen 2013, St John 2014]. Un grupo de biomateriales que se encuentran en constante desarrollo corresponde a los dispositivos para cierre de heridas donde se localizan las suturas. Hasta la fecha, los materiales de sutura que se emplean con mayor frecuencia en cirugías son polipropileno (no absorbible) y polidioxanona (absorbible) [Simón-Allué 2014]. Diversas investigaciones se han enfocado en introducir mejoras en los materiales de sutura, pero a la fecha aún se presentan inconvenientes [Linderman 2015]. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Polímeros | es_CO |
dc.subject | Aceite de ricino | es_CO |
dc.subject | Suturas (Cirugía) | es_CO |
dc.subject | Materiales biomédicos | es_CO |
dc.title | Poliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibles | es_CO |
dc.type | doctoral thesis | es_CO |
dc.identifier.local | 272175 | |
dc.identifier.local | TE10131 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | Gao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068–2075. | en |
dcterms.references | Arshad, N., Zia, K. M., Jabeen, F., Anjum, M. N., Akram, N., & Zuber, M. (2018). Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. International Journal of Biological Macromolecules, 111, 485–492. | eng |
dcterms.references | Baimark, Y., Molloy, R., Molloy, N., Siripitayananon, J., Punyodom, W., & Sriyai, M. (2005). Synthesis, characterization and melt spinning of a block copolymer of L-lactide and ε-caprolactone for potential use as an absorbable monofilament surgical suture. Journal of Materials Science: Materials in Medicine, 16(8), 699–707. | eng |
dcterms.references | Bakhshi, H., Yeganeh, H., Mehdipour-Ataei, S., Shokrgozar, M. A., Yari, A., & SaeediEslami, S. N. (2013). Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Materials Science and Engineering C, 33(1), 153–64. | eng |
dcterms.references | Basterretxea, A., Haga, Y., Sanchez-Sanchez, A., Isik, M., Irusta, L., Irusta, L., … Sardon, H. (2016). Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. European Polymer Journal, 84, 750–758. | eng |
dcterms.references | Bat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. a. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9(3), 385– 98. | eng |
dcterms.references | Bergmeister, H., Seyidova, N., Schreiber, C., Strobl, M., Grasl, C., Walter, I., … Schima, H. (2015). Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomaterialia, 11, 104–113. | eng |
dcterms.references | Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173–185. | eng |
dcterms.references | Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688–695. | eng |
dcterms.references | Chen, H., Yu, X., Zhou, W., Peng, S., & Zhao, X. (2018). Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polymer Testing, 70(July), 275–280. | eng |
dcterms.references | Chen, Q., Liang, S., & Thouas, G. a. (2013). Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 38(3–4), 584–671. | eng |
dcterms.references | Das, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404. | eng |
dcterms.references | Dave, V. J., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 21, 18–24. | eng |
dcterms.references | Domanska, A., & Boczkowska, A. (2014). Biodegradable polyurethanes from crystalline prepolymers. Polymer Degradation and Stability, 108, 175–181. | eng |
dcterms.references | dos Santos, D., Tavares, L., & Batalha, G. (2012). Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. Journal of Achievements in Materials and Manufacturing Engineering, 54(2), 211–217. | eng |
dcterms.references | Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553– 560. | eng |
dcterms.references | Fernández-d’Arlas, B., Alonso-varona, A., Palomares, T., Corcuera, M. A., & Eceiza, A. (2015). Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polymer Degradation and Stability, 122, 153– 160. | eng |
dcterms.references | Firdaus, F. E. (2014). Synergization of silicone with developed crosslinking to soy-based polyurethane foam matrix. Materials Science and Engineering, 58, 012023. | eng |
dcterms.references | Ganji, Y., Kasra, M., Salahshour, S., & Bagheri, M. (2014). Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol. Materials Science and Engineering CEngineering C, 42, 341–349. | eng |
dcterms.references | Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12(06), 301–47. | eng |
dcterms.references | He, W., & Benson, R. (2012). Polymeric biomaterials. In S. Ebnesajjad (Ed.), Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications (pp. 87–107). Elsevier. | eng |
dcterms.references | Ionescu, M., Radojčić, D., Wan, X., Shrestha, M. L., Petrović, Z. S., & Upshaw, T. A. (2016). Highly functional polyols from castor oil for rigid polyurethanes. European Polymer Journal, 84, 736–749. | eng |
dcterms.references | Ismail, E. A., Motawie, A. M., & Sadek, E. M. (2011). Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egyptian Journal of Petroleum, 20, 1–8. | eng |
dcterms.references | Javaid, M. A., Khera, R. A., Zia, K. M., Saito, K., Bhatti, I. A., & Asghar, M. (2018). Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential. International Journal of Biological Macromolecules, 115, 375–384. | eng |
dcterms.references | Jayavani, S., Sunanda, S., Varghese, T. O., & Nayak, S. K. (2017). Synthesis and characterizations of sustainable polyester polyols from non-edible vegetable oils: thermal and structural evaluation. Journal of Cleaner Production, 162, 795–805. | eng |
dcterms.references | Juita, Dlugogorski, B. Z., Kennedy, E. M., & Mackie, J. C. (2012). Low temperature oxidation of linseed oil: a review. Fire Science Reviews, 1–36. | eng |
dcterms.references | Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115(November 2017), 41–48. | eng |
dcterms.references | Kiran, S., James, N. R., Jayakrishnan, A., & Joseph, R. (2012). Polyurethane thermoplastic elastomers with inherent radiopacity for biomedical applications. Journal of Biomedical Materials Research. Part A, 100(12), 3472–3479. | eng |
dcterms.references | Kotula, A. P., Snyder, C. R., & Migler, K. B. (2017). Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 117, 1–10. | eng |
dcterms.references | Kucinska-lipka, J., Gubanska, I., Strankowski, M., Cie, H., Filipowicz, N., & Janik, H. (2017). Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modi fi ed with L-ascorbic acid, as materials for soft tissue regeneration. Materials Science and Engineering C, 75, 671–681. | eng |
dcterms.references | Kumar, A., Lale, S. V, Alex, M. R. A., Choudhary, V., & Koul, V. (2017). Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: in-vitro and in-vivo studies. Colloids and Surfaces B: Biointerfaces, 149, 369–378. | eng |
dcterms.references | Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174. | eng |
dcterms.references | Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules, 11, 2825–2835. | eng |
dcterms.references | Luo, Z., Shi, Y., Zhao, D., & He, M. (2011). Synthesis of epoxidatied castor oil and its effect on the properties of waterborne polyurethane. Procedia Engineering, 18, 37–42. | eng |
dcterms.references | Madra, H., Tantekin-Ersolmaz, B., & Guner, F. S. (2009). Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polymer Testing, 28, 773–779. | eng |
dcterms.references | Mahkam, M., & Sharifi-Sanjani, N. (2003). Preparation of new biodegradable polyurethanes as a therapeutic agent. Polymer Degradation and Stability, 80(2), 199–202. | eng |
dcterms.references | Maisonneuve, L., Chollet, G., Grau, E., & Cramail, H. (2016). Vegetable oils: a source of polyols for polyurethane materials. Oilseeds & Fats Crops and Lipids, 23(5), D508. | eng |
dcterms.references | Mangeon, C., Renard, E., Thevenieau, F., & Langlois, V. (2017). Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering C, 80, 760–770. | eng |
dcterms.references | Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692–1704. | eng |
dcterms.references | Miléo, P. C., Mulinari, D. R., Baptista, C. a. R. P., Rocha, G. J. M., & Gonçalves, a. R. (2011). Mechanical Behaviour of Polyurethane from Castor oil Reinforced Sugarcane Straw Cellulose Composites. Procedia Engineering, 10, 2068–2073. | eng |
dcterms.references | Murray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49(7), 1782–1795. | eng |
dcterms.references | Mustapa, S. R., Aung, M. M., Ahmad, A., Mansor, A., & TianKhoon, L. (2016). Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices. Electrochimica Acta, 222, 293–302. | eng |
dcterms.references | Ng, W. S., Lee, C. S., Chuah, C. H., & Cheng, S. F. (2017). Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Industrial Crops and Products, 97, 65–78. | eng |
dcterms.references | Patil, C. K., Rajput, S. D., Marathe, R. J., Kulkarni, R. D., Phadnis, H., Sohn, D., … Gite, V. V. (2017). Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Progress in Organic Coatings, 106, 87–95. | eng |
dcterms.references | Petrović, Z. S., Milic, J., Zhang, F., & Ilavsky, J. (2017). Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer, 121, 26–37. | eng |
dcterms.references | Pfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent advances in vegetable oil-based polyurethanes. ChemSusChem, 4(6), 703–17. | eng |
dcterms.references | Pillai, P. K. S., Li, S., Bouzidi, L., & Narine, S. S. (2016). Metathesized palm oil polyol for the preparation of improved bio-based rigid and flexible polyurethane foams. Industrial Crops & Products, 83, 568–576. | eng |
dcterms.references | Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2013). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(εcaprolactone). Journal of Biomedical Materials Research. Part A, 101(1), 75–86. | eng |
dcterms.references | Reddy, R., Deopura, B. L., & Joshi, M. (2010). Dry-jet-wet spun polyurethanes fibers. I. Optimization of the spinning parameters. Journal of Applied Polymer Science, 118(4), 2291–2303. | eng |
dcterms.references | Saciloto, T. R., Cervini, P., & Cavalheiro, É. T. G. (2013). Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screenprinted composite electrode. Journal of the Brazilian Chemical Society, 24(9), 1461– 1468. | eng |
dcterms.references | Scott Taylor, M., & Shalaby, S. W. (2013). Sutures. Biomaterials Science (Third Edit). Elsevier. | eng |
dcterms.references | Sharmin, E., Zafar, F., Akram, D., & Ahmad, S. (2013). Plant oil polyol nanocomposite for antibacterial polyurethane coating. Progress in Organic Coatings, 76, 541–547. | eng |
dcterms.references | Shelke, N., Nagarale, R., Kumbar, S. (2014). Polyurethanes. In Natural and Synthetic Biomedical Polymers (pp. 123–144). Saint Louis, MO, USA: Elsevier. | eng |
dcterms.references | Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947–952. | eng |
dcterms.references | Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1–11. | eng |
dcterms.references | St John, K. R. (2014). The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1332–41. | eng |
dcterms.references | Subramaniam, A., & Sethuraman, S. (2014). Biomedical applications of nondegradable polymers. In C. T. L. and M. D. Sangamesh G. Kumbar (Ed.), Natural and Synthetic Biomedical Polymers (pp. 301–308). Elsevier, Oxford. | eng |
dcterms.references | Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164. | eng |
dcterms.references | Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., & Valero, M. (2016). Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 27(18), 1860–1879. | eng |
dcterms.references | Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645. | eng |
dcterms.references | Valério, A., Araújo, P., & Sayer, C. (2013). Preparation of poly (urethane-urea) nanoparticles containing açaí oil by miniemulsion polymerization. Polímeros, 23, 451–455. | eng |
dcterms.references | Valero, M. F., & Gonzalez, a. (2012). Polyurethane adhesive system from castor oil modified by a transesterification reaction. Journal of Elastomers and Plastics, 44(5), 433–442. | eng |
dcterms.references | Vogels, R. R. M., Lambertz, A., Schuster, P., Jockenhoevel, S., Bouvy, N. D., DisselhorstKlug, C., … Klink, C. D. (2017). Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 105(1), 99–106. | eng |
dcterms.references | Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. | eng |
dcterms.references | Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221. | eng |
dcterms.references | Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180(June 2017), 304–313. | eng |
dcterms.references | Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91– 143. | eng |
dcterms.references | Zhou, L., Yu, L., Ding, M., Li, J., Tan, H., Wang, Z., & Fu, Q. (2011). Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules, 44(4), 857–864. | eng |
dcterms.references | Zia, K. M., Barikani, M., Bhatti, I. A., Bhatti, M., & Bhatti, H. N. (2008). Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. Journal of Applied Polymer Science, 110, 769–776. | eng |
dcterms.references | Zia, K. M., Bhatti, H. N., & Ahmad Bhatti, I. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: a review. Reactive & Functional Polymers, 67(8), 675–692. | eng |
dcterms.references | Zieleniewska, M., Auguscik, M., Prociak, A., Rojek, P., & Ryszkowska, J. (2014). Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Poly. Degrad. and Stability,108,241–249 | eng |
dcterms.references | Anirudhan, T. S., Nair, S. S., & Nair, A. S. (2016). Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydrate Polymers, 152, 687–698. | eng |
dcterms.references | Arévalo, F., Uscategui, Y. L., Diaz, L., Cobo, M., & Valero, M. F. (2016). Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 31(5), 708–720. | eng |
dcterms.references | Aung, M. M., Yaakob, Z., Kamarudin, S., & Abdullah, L. C. (2014). Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Industrial Crops and Products, 60, 177–185. | eng |
dcterms.references | Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365–5377. | eng |
dcterms.references | Basak, P., & Adhikari, B. (2012). Effect of the solubility of antibiotics on their release from degradable polyurethane. Materials Science and Engineering C, 32(8), 2316–2322. | eng |
dcterms.references | Bat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. a. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9(3), 385– 98. | eng |
dcterms.references | Borrero-López, A. M., Valencia, C., & Franco, J. M. (2017). Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics. European Polymer Journal, 89, 311–323. | eng |
dcterms.references | Braun, U., Lorenz, E., Weimann, C., Sturm, H., Karimov, I., Ettl, J., … Wildgruber, M. (2016). Mechanic and surface properties of central-venous port catheters after removal: a comparison of polyurethane and silicon rubber materials. Journal of the Mechanical Behavior of Biomedical Materials, 64, 281–291. | eng |
dcterms.references | Cakić, S. M., Ristić, I. S., Cincović, M. M., Nikolić, N. C., Nikolić, L., & Cvetinov, M. J. (2017). Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly (caprolactone) diol. Progress in Organic Coatings, 105, 111–122. | eng |
dcterms.references | Carriço, C. S., Fraga, T., & Pasa, V. M. D. (2016). Production and characterization of polyurethane foams from a simple mixture of castor oil , crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal, 85, 53–61. | eng |
dcterms.references | Chan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., CauichRodríguez, J. V., Quintana, P., & Bartolo-P??rez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6(6), 2035–2044. | eng |
dcterms.references | Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688–695. | eng |
dcterms.references | Chen, H., Yu, X., Zhou, W., Peng, S., & Zhao, X. (2018). Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polymer Testing, 70(July), 275–280. | eng |
dcterms.references | Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406–419. | eng |
dcterms.references | Corcuera, M. A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175–2184. | eng |
dcterms.references | Członka, S., Bertino, M. F., & Strzelec, K. (2018). Rigid polyurethane foams reinforced with industrial potato protein. Polymer Testing, 68(April), 135–145. | eng |
dcterms.references | Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553– 560. | eng |
dcterms.references | Ferreira, P., Pereira, R., Coelho, J. F. J., Silva, A. F. M., & Gil, M. H. (2007). Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules, 40(2), 144–152. | eng |
dcterms.references | Garg, B., Sandhu, V., Sood, N., Sood, A., & Malhotra, V. (2012). Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Polish Journal of Pathology, 63(3), 172–178. | eng |
dcterms.references | Gossart, A., Battiston, K. G., Gand, A., Pauthe, E., & Santerre, J. P. (2018). Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomaterialia, 66, 129–140. | eng |
dcterms.references | Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12(06), 301–47. | eng |
dcterms.references | Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 80, 39–48. | eng |
dcterms.references | Hejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., & Piszczyk, Ł. (2017). The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Industrial Crops and Products, 95, 113– 125. | eng |
dcterms.references | Hormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102(March), 151–160. | eng |
dcterms.references | Hou, Z., Zhang, H., Qu, W., Xu, Z., & Han, Z. (2016). Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε -caprolactone-co- D,L -lactide), and diurethane diisocyanates with uniform hard segment: synthesis and properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(18), 947–956. | eng |
dcterms.references | Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115(November 2017), 41–48. | eng |
dcterms.references | Kanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652. | eng |
dcterms.references | Kaur, G., Mahajan, M., & Bassi, P. (2013). Derivatized Polysaccharides: preparation, characterization, and application as bioadhesive polymer for drug delivery. International Journal of Polymeric Materials, 62(9), 475–481. | eng |
dcterms.references | Kim, H., Kang, D.-H., Kim, M., Jiao, A., Kim, D.-H., & Suh, K.-Y. (2012). Patterning methods for polymers in cell and tissue engineering, 40(6), 1–29. | eng |
dcterms.references | Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174. | eng |
dcterms.references | Liu, Y., Inoue, Y., Sakata, S., Kakinoki, S., Yamaoka, T., & Ishihara, K. (2014). Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Journal of Biomaterials Science, Polymer Edition, 25(5), 474–486. | eng |
dcterms.references | Marques, D. S., Santos, J. M. C., Ferreira, P., Correia, T. R., Correia, I. J., Gil, M. H., & Baptista, C. M. S. G. (2016). Photocurable bioadhesive based on lactic acid. Materials Science and Engineering C, 58, 601–609. | eng |
dcterms.references | Mekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egyptian Journal of Petroleum, 26(1), 9–15. | eng |
dcterms.references | Meneguelli de Souza, L. C., de Carvalho, L. P., Araújo, J. S., de Melo, E. J. T., & Machado, O. L. T. (2018). Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. International Journal of Biological Macromolecules, 113(1), 821–828. | eng |
dcterms.references | Mi, H. Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L. S. (2017). Postcrosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials and Design, 127(February), 106–114. | eng |
dcterms.references | Morral-Ruíz, G., Melgar-Lesmes, P., García, M. L., Solans, C., & García-Celma, M. J. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461(1–2), 1–13. | eng |
dcterms.references | Murray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49(7), 1782–1795. | eng |
dcterms.references | Omonov, T. S., Kharraz, E., & Curtis, J. M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107(May), 378–385. | eng |
dcterms.references | Park, H., Gong, M.-S., Park, J.-H., Moon, S.-I., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962–71. | eng |
dcterms.references | Pergal, M. V, Antic, V. V, Tovilovic, G., Nestorov, J., Vasiljevic-Radovic, D., & Djonlagic, J. (2012). In Vitro Biocompatibility Evaluation of Novel Urethane–Siloxane Co-Polymers Based on Poly(ϵ-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(ϵCaprolactone). Journal of Biomaterials Science, Polymer Edition, 23(13), 1629–1657. | eng |
dcterms.references | Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2013). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(εcaprolactone). Journal of Biomedical Materials Research. Part A, 101(1), 75–86. | eng |
dcterms.references | Rezvanain, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S. F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140. | eng |
dcterms.references | Sáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. (2016). Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Adv., 6(73), 69094–69102. | eng |
dcterms.references | Saikia, A., & Karak, N. (2017). Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polymer Degradation and Stability, 135, 8–17. | eng |
dcterms.references | Shah, S. A. A., Imran, M., Lian, Q., Shehzad, F. K., Athir, N., Zhang, J., & Cheng, J. (2018). Curcumin incorporated polyurethane urea elastomers with tunable thermo-mechanical properties. Reactive and Functional Polymers, 128(May), 97–103. | eng |
dcterms.references | Sheikh, Z., Khan, A. S., Roohpour, N., Glogauer, M., & Rehman, I. U. (2016). Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Materials Science and Engineering C, 68, 267–275. | eng |
dcterms.references | Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947–952. | eng |
dcterms.references | Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1–11. | eng |
dcterms.references | Špírková, M., Serkis, M., Poręba, R., Machová, L., Hodan, J., Kredatusová, J., … Zhigunov, A. (2016). Experimental study of the simulated process of degradation of polycarbonateand d,l-lactide-based polyurethane elastomers under conditions mimicking the physiological environment. Polymer Degradation and Stability, 125, 115–128. Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials. (Pearson, Ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall. | eng |
dcterms.references | Thakur, S., & Hu, J. (2017). Polyurethane : A Shape Memory Polymer (SMP). In F. Yilmaz (Ed.), Polyurethane. InTechOpen. | eng |
dcterms.references | Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164. | eng |
dcterms.references | Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., & Valero, M. (2016). Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 27(18), 1860–1879. | eng |
dcterms.references | Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645. | eng |
dcterms.references | Valero, M. F., & Ortegón, Y. (2015). Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: synthesis, characterization, and in vitro degradation. Journal of Elastomers and Plastics, 47(4), 360–369 | eng |
dcterms.references | Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159. | eng |
dcterms.references | Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344. | eng |
dcterms.references | Wolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221. | eng |
dcterms.references | Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant and in vitro biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872–880. | eng |
dcterms.references | Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180(June 2017), 304–313. | eng |
dcterms.references | Yoshida, K., Jiang, H., Kim, M. J., Vink, J., Cremers, S., Paik, D., … Myers, K. (2014). Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS ONE, 9(11). | eng |
dcterms.references | Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91– 143. | eng |
dcterms.references | Adolph, E. J., Pollins, A. C., Cardwell, N. L., Davidson, J. M., Guelcher, S. A., & Nanney, L. B. (2014). Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. Journal of Biomaterials Science. Polymer Edition, 25(17), 1973–85. | eng |
dcterms.references | Alishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering C, 42, 763–73. | eng |
dcterms.references | Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Heras, Á. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biol.,3,203–230. | eng |
dcterms.references | Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365–5377. | eng |
dcterms.references | Basak, P., & Adhikari, B. (2012). Effect of the solubility of antibiotics on their release from degradable polyurethane. Materials Science and Engineering C, 32(8), 2316–2322. | eng |
dcterms.references | Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173–185. | eng |
dcterms.references | Chen, R., Zhang, C., & Kessler, M. R. (2014). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying oh numbers. Journal of Applied Polymer Science, 132(1), 1–10. | eng |
dcterms.references | Clauss, M., Trampuz, A., Borens, O., Bohner, M., & Ilchmann, T. (2010). Biofilm formation on bone grafts and bone graft substitutes: Comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomaterialia, 6(9), 3791–3797. | eng |
dcterms.references | Coakley, D. N., Shaikh, F. M., O’Sullivan, K., Kavanagh, E. G., Grace, P. A., & McGloughlin, T. M. (2015). In vitro evaluation of acellular porcine urinary bladder extracellular matrix - A potential scaffold in tissue engineered skin. Wound Medicine, 10– 11, 9–16. | eng |
dcterms.references | Conejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406–419. | eng |
dcterms.references | Das, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404. | eng |
dcterms.references | Giannitelli, S. M., Basoli, F., Mozetic, P., Piva, P., Bartuli, F. N., Luciani, F., … Licoccia, S. (2015). Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 51, 329–35. | eng |
dcterms.references | Gogoi, S., Barua, S., & Karak, N. (2014). Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Progress in Organic Coatings, 77(9), 1418–1427. | eng |
dcterms.references | Guan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85–96. | eng |
dcterms.references | Han, W., Tu, M., Zeng, R., Zhao, J., & Zhou, C. (2012). Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes. Carbohydrate Polymers, 90(3), 1353–1361. | eng |
dcterms.references | Jing, X., Mi, H. Y., Huang, H. X., & Turng, L. S. (2016). Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. Journal of the Mechanical Behavior of Biomedical Materials, 64, 94–103. | eng |
dcterms.references | Kara, F., Aksoy, E. A., Yuksekdag, Z., Aksoy, S., & Hasirci, N. (2015). Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization. Applied Surface Science, 357, 1692–1702. | eng |
dcterms.references | Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science & Engineering. C, Materials for Biological Applications, 46, 166–76. | eng |
dcterms.references | Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174. | eng |
dcterms.references | Li, Y., & Shimizu, H. (2007). Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromolecular Bioscience, 7, 921–928. | eng |
dcterms.references | McBane, J. E., Sharifpoor, S., Cai, K., Labow, R. S., & Santerre, J. P. (2011). Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials, 32(26), 6034–44. | eng |
dcterms.references | Ortuno-Lizarán, I., Vilarino-Feltrer, G., Martinez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 1–12. | eng |
dcterms.references | Park, H., Gong, M.-S., Park, J.-H., Moon, S.-I., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962–71. | eng |
dcterms.references | Rajan, K. P., Al-ghamdi, A., Parameswar, R., & Nando, G. B. (2013). Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes. International Journal of Biomaterials, 1–7. | eng |
dcterms.references | Reddy, T. T., Kano, A., Maruyama, A., & Takahara, A. (2010). Synthesis, characterization and drug release of biocompatible/biodegradable non-toxic poly(urethane urea)s based on poly(epsilon-caprolactone)s and lysine-based diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(November 2014), 1483–1502. | eng |
dcterms.references | Rezvanain, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S. F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140. | eng |
dcterms.references | Rocco, K. a, Maxfield, M. W., Best, C. a, Dean, E. W., & Breuer, C. K. (2014). In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Engineering. Part B, 20(6), 628–640. | eng |
dcterms.references | Rodríguez-Galán, A., Franco, L., & Puiggal, J. (2011). Biodegradable polyurethanes and poly(ester amide)s. In A. Lendlein & A. Sisson (Eds.), Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications (First, pp. 133–154). | eng |
dcterms.references | Shahrousvand, M., Sadeghi, G. M. M., Shahrousvand, E., Ghollasi, M., & Salimi, A. (2017). Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids and Surfaces B: Biointerfaces, 156, 292–304. | eng |
dcterms.references | Spontón, M., Casis, N., Mazo, P., Raud, B., Simonetta, A., Ríos, L., & Estenoz, D. (2013). Biodegradation study by Pseudomonas sp . of flexible polyurethane foams derived from castor oil. International Biodeterioration & Biodegradation, 85, 85–94. | eng |
dcterms.references | St John, K. R. (2014). The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1332–41. | eng |
dcterms.references | Thakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164. | eng |
dcterms.references | Tijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C. H., & Kim, C. S. (2012). One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) - Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Materials Chemistry and Physics, 134(2–3), 557–561. | eng |
dcterms.references | Tsai, M.-C., Hung, K.-C., Hung, S.-C., & Hsu, S. (2015). Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces. B: Biointerfaces, 125, 34–44. | eng |
dcterms.references | Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645. | eng |
dcterms.references | van Minnen, B., Stegenga, B., van Leeuwen, M. B. M., van Kooten, T. G., & Bos, R. R. M. (2006). A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products. Journal of Biomed. Materials Research. Part A, 76(2), 377–85. | eng |
dcterms.references | Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159. | eng |
dcterms.references | Vilariño Feltrer, G., Martínez Ramos, C., Monleon De La Fuente, A., Vallés Lluch, A., Moratal Pérez, D., Barcia Albacar, J., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199–211. | eng |
dcterms.references | Wang, W., Guo, Y., & Otaigbe, J. (2008). Synthesis and characterization of novel biodegradable and biocompatible poly (ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer, 49, 4393–4398. | eng |
dcterms.references | Wang, Y., Yu, Y., Zhang, L., Qin, P., & Wang, P. (2015). One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance. Journal of Biomaterials Science, Polymer Edition, 26(8), 459–467. | eng |
dcterms.references | Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant and in vitro biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872–880. | eng |
dcterms.references | Zhou, L., Liang, D., He, X., Li, J., Tan, H., Li, J., … Gu, Q. (2012). The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials, 33(9), 2734–2745. | eng |
dcterms.references | Ballerini, P., Diomede, F., Petragnani, N., Cicchitti, S., Merciaro, I., Cavalcanti, M. F. X. B., & Trubiani, O. (2017). Conditioned medium from relapsing-remitting multiple sclerosis patients reduces the expression and release of inflammatory cytokines induced by LPSgingivalis in THP-1 and MO3.13 cell lines. Cytokine, 96(December 2016), 261–272. | eng |
dcterms.references | Chanput, W., Mes, J., Vreeburg, R. A. M., Savelkoul, H. F. J., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: A tool to study inflammation modulating effects of food-derived compounds. Food and Function, 1(3), 254–261. | eng |
dcterms.references | Dash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., … Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose- dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126–139. | eng |
dcterms.references | Dreskin, S. C., Thomas, G. W., Dale, S. N., & Heasley, L. E. (2001). Isoforms of Jun Kinase Are Differentially Expressed and Activated in Human Monocyte/Macrophage (THP-1) Cells. The Journal of Immunology, 166(9), 5646–5653. | eng |
dcterms.references | Lin, T. H., Yao, Z., Sato, T., Keeney, M., Li, C., Pajarinen, J., … Goodman, S. B. (2014). Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomaterialia, 10(8), 3747–3755. | eng |
dcterms.references | Lund, M. E., To, J., O’Brien, B. A., & Donnelly, S. (2016). The choice of phorbol 12- myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 430, 64–70. | eng |
dcterms.references | Park, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., & Kim, K. S. (2007). Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflammation Research, 56, 45–50. | eng |
dcterms.references | Small, A., Lansdown, N., Al-Baghdadi, M., Quach, A., & Ferrante, A. (2018). Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. Journal of Immunological Methods, (May), 0–1. | eng |
dcterms.references | Starr, T., Bauler, T. J., Malik-Kale, P., & Steele-Mortimer, O. (2018). The phorbol 12- myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE, 13(3), 1–13. | eng |
dcterms.references | Angeloni, V., Contessi, N., De Marco, C., Bertoldi, S., Tanzi, M. C., Daidone, M. G., & Farè, S. (2017). Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomaterialia, 63, 306–316. | eng |
dcterms.references | Gabriel, L. P., Santos, M. E. M. do., Jardini, A. L., Bastos, G. N. T., Dias, C. G. B. T., Webster, T. J., & Maciel Filho, R. (2017). Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(1), 201–208. | eng |
dcterms.references | Garg, B., Sandhu, V., Sood, N., Sood, A., & Malhotra, V. (2012). Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Polish Journal of Pathology, 63(3), 172–178. | eng |
dcterms.references | Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for Valid Histopathologic Scoring in Research. Veterinary Pathology, 50(6), 1007–1015. | eng |
dcterms.references | Gossart, A., Battiston, K. G., Gand, A., Pauthe, E., & Santerre, J. P. (2018). Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomaterialia, 66, 129–140. | eng |
dcterms.references | Inzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2016). Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials, 81, 58–71. | eng |
dcterms.references | Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174. | eng |
dcterms.references | Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M. C., Imani, R., … Farè, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering C, 82(August 2017), 130–140. | eng |
dcterms.references | Ng, W. S., Lee, C. S., Chuah, C. H., & Cheng, S. F. (2017). Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Industrial Crops and Products, 97, 65–78. | eng |
dcterms.references | Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159. | eng |
dcterms.references | Zhang, J., Woodruff, T. M., Clark, R. J., Martin, D. J., & Minchin, R. F. (2016). Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomaterialia, 41, 264–272. | eng |
dcterms.references | Caracciolo, P. C., & Abraham, G. A. (2015). Poliuretanos biomédicos: síntesis, propiedaes, procesamiento y aplicaciones. In H. Sousa, M. Braga, & A. Sosnik (Eds.), Biomateriales aplicados al diseño de sistemas terapéuticos avanzados (pp. 147–181). Universidad de Coimbra. | es_CO |
dcterms.references | Valero-Valdivieso, M., Ortegon, Y., & Uscategui, Y. (2013). Biopolímeros: avances y perspectivas. Dyna, 80(181), 171–180. Retrieved from | es_CO |
dcterms.references | Fuentes, L. E., Pérez, S., Martínez, S. I., & García, Á. R. (2011). Redes poliméricas interpenetradas de poliuretano a partir de aceite de ricino modificado y poliestireno: miscibilidad y propiedades mecánicas en función de la composición. Revisata Ion, 24(2), 45–50. | es_CO |
dcterms.references | Valero, M. F., & Díaz, L. E. (2014). Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: síntesis, propiedades mecánicas y térmicas y degradación in vitro. Quimica Nova, 37(9), 1441–1445. | es_CO |
dcterms.references | Valero, M. F., Pulido, J. E., Ramírez, Á., & Cheng, Z. (2009). Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros, 19(1), 14–21. | es_CO |
dcterms.references | Estrada, A., & Herrera, J. (2013). Síntesis de materiales a base de uretano reforzados con nanopartículas metálicas. I. Síntesis y caracterización. Revista Iberoamericana de Polímeros, 14(1), 28–38. Retrieved from | es_CO |
dcterms.references | Larraza, Í. (2012). Desarrollo de nuevas estrategias para la preparación de nanocomposites con propriedades antimicrobianas. Universidad Autónoma de Madrid. | es_CO |
dcterms.references | Rodríguez, A., & Rodríguez, Y. (2015). Biodegradación depoliuretao mediante el uso del hongo Pestalotiopsis microspora. Barrancabermeja, Santander-Colombia. | es_CO |
dcterms.references | Gómez Estrada, H. A., González Ruiz, K. N., & Medina, J. D. (2011). Actividad antiinflamatoria de productos naturales. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 10(3), 182–217. | es_CO |
dcterms.references | González, R., Zamora, Z., & Alonso, Y. (2009). Citocinas anti-inflamatorias y sus acciones y efectos en la sepsis y el choque séptico. REDVET. Revista Electrónica de Veterinaria, 10(9), 1–11. | es_CO |
dcterms.references | Oliveira, C. M., Sakata, R. K., Issy, A. M., & Gerola, L. R. (2011). Citocinas y dolor. Revista Brasileira de Anestesiología, 61(2), 137–142. | es_CO |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |