Mostrar el registro sencillo del ítem
Papel de la histona demetilasa kdm4c en el desarrollo del cáncer de seno triple negativo
dc.contributor.advisor | Lizcano Losada, Fernando | |
dc.contributor.author | García Serrano, Jeison | |
dc.date.accessioned | 3/12/2019 11:22 | |
dc.date.available | 3/12/2019 11:22 | |
dc.date.issued | 2018-11-14 | |
dc.identifier.uri | http://hdl.handle.net/10818/35133 | |
dc.description | 123 páginas | es_CO |
dc.description.abstract | La complejidad del ser humano se concentra en los más de 30000 genes que componen nuestro genoma, almacenando la información necesaria para la expresión de macromoléculas en espacio y tiempo específicos, permitiendo el mantenimiento del fenotipo celular [1]. La regulación de la expresión génica envuelve la modificación de la estructura compleja del ADN nuclear, alterando la complejidad del enrollamiento de la doble hebra en un octámero de proteínas histonas como parte de la unidad básica de la cromatina: el nucleosoma [2, 3]. El nucleosoma fue descrito por el premio nobel de química en 1974, Roger Kornberg [3], y está compuesto por un octámero de cuatro proteínas llamadas histonas (H3, H4, H2A y H2B), proteínas muy básicas alrededor de las cuales se enrollan 147 pares de bases de ADN dando 1,65 vueltas y cuya estructura se interconecta con los nucleosomas adyacentes mediante la histona H1. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Macromoléculas | es_CO |
dc.subject | Genética | es_CO |
dc.subject | ADN | es_CO |
dc.subject | Cromatina | es_CO |
dc.subject | Enfermedades de la mama -- Cáncer | es_CO |
dc.title | Papel de la histona demetilasa kdm4c en el desarrollo del cáncer de seno triple negativo | es_CO |
dc.type | doctoral thesis | es_CO |
dc.identifier.local | 270587 | |
dc.identifier.local | TE09992 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | B.S. Shruthi, P. Vinodhkumar, Selvamani, Proteomics: A new perspective for cancer, Advanced biomedical research, 5 (2016) 67. | en |
dcterms.references | A.J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifications, Cell research, 21 (2011) 381-395. | en |
dcterms.references | R.D. Kornberg, Chromatin structure: a repeating unit of histones and DNA, Science, 184 (1974) 868-871. | en |
dcterms.references | F. Lizcano, J. Garcia, Epigenetic control and cancer: the potential of histone demethylases as therapeutic targets, Pharmaceuticals, 5 (2012) 963-990 | en |
dcterms.references | P. Zhu, G. Li, Structural insights of nucleosome and the 30-nm chromatin fiber, Current opinion in structural biology, 36 (2016) 106-115. | en |
dcterms.references | M. Xu, B. Zhu, Nucleosome assembly and epigenetic inheritance, Protein & cell, 1 (2010) 820-829. | en |
dcterms.references | S.L. Berger, T. Kouzarides, R. Shiekhattar, A. Shilatifard, An operational definition of epigenetics, Genes & development, 23 (2009) 781-783. | en |
dcterms.references | S.L. Berger, The complex language of chromatin regulation during transcription, Nature, 447 (2007) 407-412. | en |
dcterms.references | J.A. Latham, S.Y. Dent, Cross-regulation of histone modifications, Nature structural & molecular biology, 14 (2007) 1017-1024. | en |
dcterms.references | C. Sawan, Z. Herceg, Histone modifications and cancer, Advances in genetics, 70 (2010) 57-85. | en |
dcterms.references | K.C. Wang, H.Y. Chang, Molecular mechanisms of long noncoding RNAs, Molecular cell, 43 (2011) 904-914 | en |
dcterms.references | G. Hu, F. Niu, B.A. Humburg, K. Liao, S. Bendi, S. Callen, H.S. Fox, S. Buch, Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis, Oncotarget, 9 (2018) 18648-18663 | en |
dcterms.references | D. Bayarsaihan, Epigenetic mechanisms in inflammation, Journal of dental research, 90 (2011) 9-17. | en |
dcterms.references | F.F. Costa, Epigenomics in cancer management, Cancer management and research, 2 (2010) 255-265. | en |
dcterms.references | H.C. Tsai, S.B. Baylin, Cancer epigenetics: linking basic biology to clinical medicine, Cell research, 21 (2011) 502-517. | en |
dcterms.references | F.R. Zahir, C.J. Brown, Epigenetic impacts on neurodevelopment: pathophysiological mechanisms and genetic modes of action, Pediatric research, 69 (2011) 92R-100R. | en |
dcterms.references | X. Zhang, S.M. Ho, Epigenetics meets endocrinology, Journal of molecular endocrinology, 46 (2011) R11-32. | en |
dcterms.references | S. Castellano, D. Kuck, M. Viviano, J. Yoo, F. Lopez-Vallejo, P. Conti, L. Tamborini, A. Pinto, J.L. Medina-Franco, G. Sbardella, Synthesis and biochemical evaluation of delta(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors, Journal of medicinal chemistry, 54 (2011) 7663-7677 | en |
dcterms.references | Y. Chen, W. Jie, W. Yan, K. Zhou, Y. Xiao, Lysine-specific histone demethylase 1 (LSD1): A potential molecular target for tumor therapy, Critical reviews in eukaryotic gene expression, 22 (2012) 53-59 | en |
dcterms.references | T.Z. Yi, J. Li, X. Han, J. Guo, Q. Qu, L. Guo, H.D. Sun, W.H. Tan, DNMT Inhibitors and HDAC Inhibitors Regulate E-Cadherin and Bcl-2 Expression in Endometrial Carcinoma in vitro and in vivo, Chemotherapy, 58 (2012) 19-29. | en |
dcterms.references | M. Ahmad, A. Hamid, A. Hussain, R. Majeed, Y. Qurishi, J.A. Bhat, R.A. Najar, A.K. Qazi, M.A. Zargar, S.K. Singh, A.K. Saxena, Understanding Histone Deacetylases in the Cancer Development and Treatment: An Epigenetic Perspective of Cancer Chemotherapy, DNA and cell biology, (2012). | en |
dcterms.references | O. Mehdi, S. Francoise, C.L. Sofia, G. Urs, Z. Kevin, S. Bernard, S. Igor, C.D. Anabela, L. Dominique, M. Eric, O. Ali, HDAC gene expression in pancreatic tumor cell lines following treatment with the HDAC inhibitors panobinostat (LBH589) and trichostatine (TSA), Pancreatology, 12 (2012) 146-155. | en |
dcterms.references | P.N. Munster, K.T. Thurn, S. Thomas, P. Raha, M. Lacevic, A. Miller, M. Melisko, R. Ismail-Khan, H. Rugo, M. Moasser, S.E. Minton, A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer, British journal of cancer, 104 (2011) 1828-1835 | en |
dcterms.references | T. Oike, H. Ogiwara, K. Torikai, T. Nakano, J. Yokota, T. Kohno, Garcinol, a Histone Acetyltransferase Inhibitor, Radiosensitizes Cancer Cells by Inhibiting Non-Homologous End Joining, International journal of radiation oncology, biology, physics, (2012) | en |
dcterms.references | K.T. Thurn, S. Thomas, A. Moore, P.N. Munster, Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer, Future Oncol, 7 (2011) 263-283. | en |
dcterms.references | N. Uehara, K. Yoshizawa, A. Tsubura, Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells, Oncology reports, (2012). | en |
dcterms.references | S. Hamada, T. Suzuki, K. Mino, K. Koseki, F. Oehme, I. Flamme, H. Ozasa, Y. Itoh, D. Ogasawara, H. Komaarashi, A. Kato, H. Tsumoto, H. Nakagawa, M. Hasegawa, R. Sasaki, T. Mizukami, N. Miyata, Design, synthesis, enzymeinhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors, Journal of medicinal chemistry, 53 (2010) 5629-5638. | en |
dcterms.references | M. Rao, N. Chinnasamy, J.A. Hong, Y. Zhang, M. Zhang, S. Xi, F. Liu, V.E. Marquez, R.A. Morgan, D.S. Schrump, Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer, Cancer research, 71 (2011) 4192-4204. | en |
dcterms.references | G. Toyokawa, H.S. Cho, Y. Iwai, M. Yoshimatsu, M. Takawa, S. Hayami, K. Maejima, N. Shimizu, H. Tanaka, T. Tsunoda, H.I. Field, J.D. Kelly, D.E. Neal, B.A. Ponder, Y. Maehara, Y. Nakamura, R. Hamamoto, The histone demethylase JMJD2B plays an essential role in human carcinogenesis through positive regulation of cyclin-dependent kinase 6, Cancer Prev Res (Phila), 4 (2011) 2051- 2061 | en |
dcterms.references | G. Toyokawa, H.S. Cho, K. Masuda, Y. Yamane, M. Yoshimatsu, S. Hayami, M. Takawa, Y. Iwai, Y. Daigo, E. Tsuchiya, T. Tsunoda, H.I. Field, J.D. Kelly, D.E. Neal, Y. Maehara, B.A. Ponder, Y. Nakamura, R. Hamamoto, Histone lysine methyltransferase Wolf-Hirschhorn syndrome candidate 1 is involved in human carcinogenesis through regulation of the Wnt pathway, Neoplasia, 13 (2011) 887- 898. | en |
dcterms.references | J. Wang, F. Lu, Q. Ren, H. Sun, Z. Xu, R. Lan, Y. Liu, D. Ward, J. Quan, T. Ye, H. Zhang, Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties, Cancer research, 71 (2011) 7238-7249. [32] B. Jin, Y. Li, K.D. Robertson, DNA methylation: superior or subordinate in the epigenetic hierarchy?, Genes & cancer, 2 (2011) 607-617. | en |
dcterms.references | A. Bird, DNA methylation patterns and epigenetic memory, Genes & development, 16 (2002) 6-21. | en |
dcterms.references | M. Kulis, M. Esteller, DNA methylation and cancer, Advances in genetics, 70 (2010) 27-56 | en |
dcterms.references | C. Kurkjian, S. Kummar, A.J. Murgo, DNA methylation: its role in cancer development and therapy, Current problems in cancer, 32 (2008) 187-235 | en |
dcterms.references | H. Cedar, Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms, Nature reviews. Genetics, 10 (2009) 295-304. | en |
dcterms.references | R.A. Irvine, I.G. Lin, C.L. Hsieh, DNA methylation has a local effect on transcription and histone acetylation, Molecular and cellular biology, 22 (2002) 6689-6696. | en |
dcterms.references | L. Johansson, F. Pratesi, M. Brink, L. Arlestig, C. D'Amato, D. Bartaloni, P. Migliorini, S. Rantapaa-Dahlqvist, Antibodies directed against endogenous and exogenous citrullinated antigens pre-date the onset of rheumatoid arthritis, Arthritis research & therapy, 18 (2016) 127 | en |
dcterms.references | B.R. England, G.M. Thiele, T.R. Mikuls, Anticitrullinated protein antibodies: origin and role in the pathogenesis of rheumatoid arthritis, Current opinion in rheumatology, 29 (2017) 57-64 | en |
dcterms.references | N. Umeda, I. Matsumoto, H. Kawaguchi, Y. Kurashima, Y. Kondo, H. Tsuboi, H. Ogishima, T. Suzuki, Y. Kagami, T. Sakyu, A. Ishigami, N. Maruyama, T. Sumida, Prevalence of soluble peptidylarginine deiminase 4 (PAD4) and anti-PAD4 antibodies in autoimmune diseases, Clinical rheumatology, 35 (2016) 1181-1188. | en |
dcterms.references | P.O. Hassa, S.S. Haenni, M. Elser, M.O. Hottiger, Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?, Microbiology and molecular biology reviews : MMBR, 70 (2006) 789-829 | en |
dcterms.references | T. Hunter, Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling, Cell, 80 (1995) 225-236. | en |
dcterms.references | H. Jacobsen, D.A. Epstein, R.M. Friedmann, B. Safer, P.F. Torrence, Doublestranded RNA-dependent phosphorylation of protein P1 and eukaryotic initiation factor 2 alpha does not correlate with protein synthesis inhibition in a cell-free system from interferon-treated mouse L cells, Proceedings of the National Academy of Sciences of the United States of America, 80 (1983) 41-45. | en |
dcterms.references | W.J. Wedemeyer, E. Welker, H.A. Scheraga, Proline cis-trans isomerization and protein folding, Biochemistry, 41 (2002) 14637-14644. | en |
dcterms.references | B.M. Dunyak, J.E. Gestwicki, Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds, Journal of medicinal chemistry, 59 (2016) 9622-9644 | en |
dcterms.references | R. Striker, A. Mehle, Inhibitors of peptidyl proline isomerases as antivirals in hepatitis C and other viruses, PLoS pathogens, 10 (2014) e1004428. | en |
dcterms.references | G.L. Grice, J.A. Nathan, The recognition of ubiquitinated proteins by the proteasome, Cellular and molecular life sciences : CMLS, 73 (2016) 3497-3506. | en |
dcterms.references | L. Zhang, F. Gong, The emerging role of deubiquitination in nucleotide excision repair, DNA repair, 44 (2016) 118-122. | en |
dcterms.references | B. Suresh, J. Lee, S.H. Hong, K.S. Kim, S. Ramakrishna, The role of deubiquitinating enzymes in spermatogenesis, Cellular and molecular life sciences : CMLS, 72 (2015) 4711-4720 | en |
dcterms.references | A. Etzioni, A. Ciechanover, E. Pikarsky, Immune defects caused by mutations in the ubiquitin system, The Journal of allergy and clinical immunology, 139 (2017) 743-753. | en |
dcterms.references | E. Lazzari, G. Meroni, TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: From muscular dystrophy to tumours, The international journal of biochemistry & cell biology, 79 (2016) 469-477 | en |
dcterms.references | J. Liu, C. Zhang, X.L. Wang, P. Ly, V. Belyi, Z.Y. Xu-Monette, K.H. Young, W. Hu, Z. Feng, E3 ubiquitin ligase TRIM32 negatively regulates tumor suppressor p53 to promote tumorigenesis, Cell death and differentiation, 21 (2014) 1792-1804. | en |
dcterms.references | E. Kudryashova, J. Wu, L.A. Havton, M.J. Spencer, Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component, Human molecular genetics, 18 (2009) 1353-1367 | en |
dcterms.references | J. Li, Q.Y. Chai, C.H. Liu, The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions, Cellular & molecular immunology, 13 (2016) 560-576 | en |
dcterms.references | A. Princz, N. Tavernarakis, The role of SUMOylation in ageing and senescent decline, Mechanisms of ageing and development, (2017). | en |
dcterms.references | F.Y. Liu, Y.F. Liu, Y. Yang, Z.W. Luo, J.W. Xiang, Z.G. Chen, R.L. Qi, T.H. Yang, Y. Xiao, W.J. Qing, D.W. Li, SUMOylation in Neurological Diseases, Current molecular medicine, (2017). | en |
dcterms.references | L. Gong, R. Qi, D.W. Li, Sumoylation Pathway as Potential Therapeutic Targets in Cancer, Current molecular medicine, (2016). | en |
dcterms.references | W.S. Yang, M. Campbell, P.C. Chang, SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication, PLoS pathogens, 13 (2017) e1006216 | en |
dcterms.references | Y. Liu, Z. Zheng, B. Shu, J. Meng, Y. Zhang, C. Zheng, X. Ke, P. Gong, Q. Hu, H. Wang, SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication, Journal of virology, 90 (2016) 10472-10485. | en |
dcterms.references | D.E. Sterner, S.L. Berger, Acetylation of histones and transcription-related factors, Microbiology and molecular biology reviews : MMBR, 64 (2000) 435-459. | en |
dcterms.references | A. Eberharter, P.B. Becker, Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics, EMBO reports, 3 (2002) 224-229. | en |
dcterms.references | A. Richters, A.N. Koehler, Epigenetic Modulation using Small Molecules - Targeting Histone Acetyltransferases in Disease, Current medicinal chemistry, (2017). | en |
dcterms.references | A. Ansari, M.S. Rahman, S.K. Saha, F.K. Saikot, A. Deep, K.H. Kim, Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease, Aging cell, 16 (2017) 4-16. | en |
dcterms.references | C. Angiolilli, D.L. Baeten, T.R. Radstake, K.A. Reedquist, The acetyl code in rheumatoid arthritis and other rheumatic diseases, Epigenomics, (2017). | en |
dcterms.references | X. Qiu, X. Xiao, N. Li, Y. Li, Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases, Progress in neuropsychopharmacology & biological psychiatry, 72 (2017) 60-72 | en |
dcterms.references | A.J. Bannister, R. Schneider, T. Kouzarides, Histone methylation: dynamic or static?, Cell, 109 (2002) 801-806. | en |
dcterms.references | Y. Shi, F. Lan, C. Matson, P. Mulligan, J.R. Whetstine, P.A. Cole, R.A. Casero, Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell, 119 (2004) 941-953. | en |
dcterms.references | A. Barski, S. Cuddapah, K. Cui, T.Y. Roh, D.E. Schones, Z. Wang, G. Wei, I. Chepelev, K. Zhao, High-resolution profiling of histone methylations in the human genome, Cell, 129 (2007) 823-837. | en |
dcterms.references | R.A. Varier, H.T. Timmers, Histone lysine methylation and demethylation pathways in cancer, Biochimica et biophysica acta, 1815 (2011) 75-89. | en |
dcterms.references | J. Wesche, S. Kuhn, B.M. Kessler, M. Salton, A. Wolf, Protein arginine methylation: a prominent modification and its demethylation, Cellular and molecular life sciences : CMLS, (2017) | en |
dcterms.references | M. Luo, Current chemical biology approaches to interrogate protein methyltransferases, ACS chemical biology, 7 (2012) 443-463. | en |
dcterms.references | J.M. Burg, J.E. Link, B.S. Morgan, F.J. Heller, A.E. Hargrove, D.G. McCafferty, KDM1 class flavin-dependent protein lysine demethylases, Biopolymers, 104 (2015) 213-246 | en |
dcterms.references | J.H. Schulte, S. Lim, A. Schramm, N. Friedrichs, J. Koster, R. Versteeg, I. Ora, K. Pajtler, L. Klein-Hitpass, S. Kuhfittig-Kulle, E. Metzger, R. Schule, A. Eggert, R. Buettner, J. Kirfel, Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy, Cancer research, 69 (2009) 2065-2071 | en |
dcterms.references | D. Jie, Z. Zhongmin, L. Guoqing, L. Sheng, Z. Yi, W. Jing, Z. Liang, Positive expression of LSD1 and negative expression of E-cadherin correlate with metastasis and poor prognosis of colon cancer, Digestive diseases and sciences, 58 (2013) 1581-1589. | en |
dcterms.references | D.P. Mould, A.E. McGonagle, D.H. Wiseman, E.L. Williams, A.M. Jordan, Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date, Medicinal research reviews, 35 (2015) 586-618. | en |
dcterms.references | Q. Zhu, Y. Huang, L.J. Marton, P.M. Woster, N.E. Davidson, R.A. Casero, Jr., Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells, Amino acids, 42 (2012) 887-898. | en |
dcterms.references | D. Rotili, S. Tomassi, M. Conte, R. Benedetti, M. Tortorici, G. Ciossani, S. Valente, B. Marrocco, D. Labella, E. Novellino, A. Mattevi, L. Altucci, A. Tumber, C. Yapp, O.N. King, R.J. Hopkinson, A. Kawamura, C.J. Schofield, A. Mai, Panhistone demethylase inhibitors simultaneously targeting Jumonji C and lysinespecific demethylases display high anticancer activities, Journal of medicinal chemistry, 57 (2014) 42-55. | en |
dcterms.references | R. Fang, A.J. Barbera, Y. Xu, M. Rutenberg, T. Leonor, Q. Bi, F. Lan, P. Mei, G.C. Yuan, C. Lian, J. Peng, D. Cheng, G. Sui, U.B. Kaiser, Y. Shi, Y.G. Shi, Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation, Molecular cell, 39 (2010) 222-233 | en |
dcterms.references | D.N. Ciccone, H. Su, S. Hevi, F. Gay, H. Lei, J. Bajko, G. Xu, E. Li, T. Chen, KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints, Nature, 461 (2009) 415-418. | en |
dcterms.references | K.R. Stewart, L. Veselovska, J. Kim, J. Huang, H. Saadeh, S. Tomizawa, S.A. Smallwood, T. Chen, G. Kelsey, Dynamic changes in histone modifications precede de novo DNA methylation in oocytes, Genes & development, 29 (2015) 2449-2462. | en |
dcterms.references | T.A. Katz, S.N. Vasilatos, E. Harrington, S. Oesterreich, N.E. Davidson, Y. Huang, Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells, Breast cancer research and treatment, 146 (2014) 99-108 | en |
dcterms.references | T. Takeuchi, Y. Yamazaki, Y. Katoh-Fukui, R. Tsuchiya, S. Kondo, J. Motoyama, T. Higashinakagawa, Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation, Genes & development, 9 (1995) 1211- 1222 | en |
dcterms.references | D. Balciunas, H. Ronne, Evidence of domain swapping within the jumonji family of transcription factors, Trends in biochemical sciences, 25 (2000) 274-276 | en |
dcterms.references | T. Takeuchi, Y. Watanabe, T. Takano-Shimizu, S. Kondo, Roles of jumonji and jumonji family genes in chromatin regulation and development, Developmental dynamics : an official publication of the American Association of Anatomists, 235 (2006) 2449-2459 | en |
dcterms.references | S. Markolovic, T.M. Leissing, R. Chowdhury, S.E. Wilkins, X. Lu, C.J. Schofield, Structure-function relationships of human JmjC oxygenasesdemethylases versus hydroxylases, Current opinion in structural biology, 41 (2016) 62-72 | en |
dcterms.references | N.R. Rose, M.A. McDonough, O.N. King, A. Kawamura, C.J. Schofield, Inhibition of 2-oxoglutarate dependent oxygenases, Chemical Society reviews, 40 (2011) 4364-4397 | en |
dcterms.references | C.J. Schofield, Z. Zhang, Structural and mechanistic studies on 2- oxoglutarate-dependent oxygenases and related enzymes, Current opinion in structural biology, 9 (1999) 722-731. | en |
dcterms.references | R. Cacabelos, C. Torrellas, Epigenetics of Aging and Alzheimer's Disease: Implications for Pharmacogenomics and Drug Response, International journal of molecular sciences, 16 (2015) 30483-30543. | en |
dcterms.references | R. Lardenoije, A. Iatrou, G. Kenis, K. Kompotis, H.W. Steinbusch, D. Mastroeni, P. Coleman, C.A. Lemere, P.R. Hof, D.L. van den Hove, B.P. Rutten, The epigenetics of aging and neurodegeneration, Progress in neurobiology, 131 (2015) 21-64 | en |
dcterms.references | H. Long, H. Yin, L. Wang, M.E. Gershwin, Q. Lu, The critical role of epigenetics in systemic lupus erythematosus and autoimmunity, Journal of autoimmunity, 74 (2016) 118-138. | en |
dcterms.references | R. Mathur, L. Sehgal, O. Havranek, S. Kohrer, T. Khashab, N. Jain, J.A. Burger, S.S. Neelapu, R.E. Davis, F. Samaniego, Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs, Haematologica, 102 (2017) 373-380 | en |
dcterms.references | C.A. Zahnow, M. Topper, M. Stone, T. Murray-Stewart, H. Li, S.B. Baylin, R.A. Casero, Jr., Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy, Advances in cancer research, 130 (2016) 55-111 | en |
dcterms.references | M. Wan, J. Liang, Y. Xiong, F. Shi, Y. Zhang, W. Lu, Q. He, D. Yang, R. Chen, D. Liu, M. Barton, Z. Songyang, The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells, The Journal of biological chemistry, 288 (2013) 5039-5048. | en |
dcterms.references | L.C. Young, D.W. McDonald, M.J. Hendzel, Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following gammairradiation, The Journal of biological chemistry, 288 (2013) 21376-21388. | en |
dcterms.references | A. Italiano, R. Attias, A. Aurias, G. Perot, F. Burel-Vandenbos, J. Otto, N. Venissac, F. Pedeutour, Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C, Cancer genetics and cytogenetics, 167 (2006) 122- 130. | en |
dcterms.references | J.C. Black, A.L. Manning, C. Van Rechem, J. Kim, B. Ladd, J. Cho, C.M. Pineda, N. Murphy, D.L. Daniels, C. Montagna, P.W. Lewis, K. Glass, C.D. Allis, N.J. Dyson, G. Getz, J.R. Whetstine, KDM4A lysine demethylase induces sitespecific copy gain and rereplication of regions amplified in tumors, Cell, 154 (2013) 541-555 | en |
dcterms.references | L.C. Young, M.J. Hendzel, The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression, Biochemistry and cell biology = Biochimie et biologie cellulaire, 91 (2013) 369-377 | en |
dcterms.references | T.D. Kim, F. Jin, S. Shin, S. Oh, S.A. Lightfoot, J.P. Grande, A.J. Johnson, J.M. van Deursen, J.D. Wren, R. Janknecht, Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1, The Journal of clinical investigation, 126 (2016) 706-720. | en |
dcterms.references | Q. Ye, A. Holowatyj, J. Wu, H. Liu, L. Zhang, T. Suzuki, Z.Q. Yang, Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer, American journal of cancer research, 5 (2015) 1519-1530. | en |
dcterms.references | C. Marvalim, J.X. Wong, N. Sutiman, W.T. Lim, S.W. Tan, R. Kanesvaran, Q.S. Ng, A. Jain, M.K. Ang, W.L. Tan, C.K. Toh, E.H. Tan, B. Chowbay, Influence of the KDM4A rs586339 polymorphism on overall survival in Asian non-small-cell lung cancer patients, Pharmacogenetics and genomics, 27 (2017) 120-123. | en |
dcterms.references | W.L. Berry, S. Shin, S.A. Lightfoot, R. Janknecht, Oncogenic features of the JMJD2A histone demethylase in breast cancer, International journal of oncology, 41 (2012) 1701-1706. | en |
dcterms.references | X. Ding, H. Pan, J. Li, Q. Zhong, X. Chen, S.M. Dry, C.Y. Wang, Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis, Science signaling, 6 (2013) ra28 21-13, S20-15 | en |
dcterms.references | Y. Liu, D. Zhang, HP1a/KDM4A is involved in the autoregulatory loop of the oncogene gene c-Jun, Epigenetics, 10 (2015) 453-459. | en |
dcterms.references | M. Kawazu, K. Saso, K.I. Tong, T. McQuire, K. Goto, D.O. Son, A. Wakeham, M. Miyagishi, T.W. Mak, H. Okada, Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development, PloS one, 6 (2011) e17830 | en |
dcterms.references | L. Shi, L. Sun, Q. Li, J. Liang, W. Yu, X. Yi, X. Yang, Y. Li, X. Han, Y. Zhang, C. Xuan, Z. Yao, Y. Shang, Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011) 7541-7546 | en |
dcterms.references | K. Coffey, L. Rogerson, C. Ryan-Munden, D. Alkharaif, J. Stockley, R. Heer, K. Sahadevan, D. O'Neill, D. Jones, S. Darby, P. Staller, A. Mantilla, L. Gaughan, C.N. Robson, The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover, Nucleic acids research, 41 (2013) 4433-4446 | en |
dcterms.references | Z. Chen, X. Wang, R. Liu, L. Chen, J. Yi, B. Qi, Z. Shuang, M. Liu, X. Li, S. Li, H. Tang, KDM4B-mediated epigenetic silencing of miRNA-615-5p augments RAB24 to facilitate malignancy of hepatoma cells, Oncotarget, 8 (2017) 17712- 17725 | en |
dcterms.references | Y. Liu, P. Zheng, Y. Liu, T. Ji, X. Liu, S. Yao, X. Cheng, Y. Li, L. Chen, Z. Xiao, J. Zhou, J. Li, An epigenetic role for PRL-3 as a regulator of H3K9 methylation in colorectal cancer, Gut, 62 (2013) 571-581. | en |
dcterms.references | L. Fu, L. Chen, J. Yang, T. Ye, Y. Chen, J. Fang, HIF-1alpha-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism, Carcinogenesis, 33 (2012) 1664-1673. | en |
dcterms.references | H. Bur, K.M. Haapasaari, T. Turpeenniemi-Hujanen, O. Kuittinen, P. Auvinen, K. Marin, Y. Soini, P. Karihtala, Strong KDM4B and KDM4D Expression Associates with Radioresistance and Aggressive Phenotype in Classical Hodgkin Lymphoma, Anticancer research, 36 (2016) 4677-4683. | en |
dcterms.references | M.T. Qiu, Q. Fan, Z. Zhu, S.Y. Kwan, L. Chen, J.H. Chen, Z.L. Ying, Y. Zhou, W. Gu, L.H. Wang, W.W. Cheng, J. Zeng, X.P. Wan, S.C. Mok, K.K. Wong, W. Bao, KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1, Oncotarget, 6 (2015) 31702-31720. | en |
dcterms.references | C. Wilson, L. Qiu, Y. Hong, T. Karnik, G. Tadros, B. Mau, T. Ma, Y. Mu, J. New, R.J. Louie, S. Gunewardena, A.K. Godwin, O.W. Tawfik, J. Chien, K.F. Roby, A.J. Krieg, The histone demethylase KDM4B regulates peritoneal seeding of ovarian cancer, Oncogene, (2016). | en |
dcterms.references | J.G. Kim, J.M. Yi, S.J. Park, J.S. Kim, T.G. Son, K. Yang, M.A. Yoo, K. Heo, Histone demethylase JMJD2B-mediated cell proliferation regulated by hypoxia and radiation in gastric cancer cell, Biochimica et biophysica acta, 1819 (2012) 1200- 1207. | en |
dcterms.references | H. Khoury-Haddad, P.T. Nadar-Ponniah, S. Awwad, N. Ayoub, The emerging role of lysine demethylases in DNA damage response: dissecting the recruitment mode of KDM4D/JMJD2D to DNA damage sites, Cell Cycle, 14 (2015) 950-958 | en |
dcterms.references | T.D. Kim, S. Oh, S. Shin, R. Janknecht, Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D, PloS one, 7 (2012) e34618. | en |
dcterms.references | P.A. Cloos, J. Christensen, K. Agger, A. Maiolica, J. Rappsilber, T. Antal, K.H. Hansen, K. Helin, The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3, Nature, 442 (2006) 307-311. | en |
dcterms.references | W.L. Berry, R. Janknecht, KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells, Cancer research, 73 (2013) 2936-2942 | en |
dcterms.references | Z. Chen, J. Zang, J. Whetstine, X. Hong, F. Davrazou, T.G. Kutateladze, M. Simpson, Q. Mao, C.H. Pan, S. Dai, J. Hagman, K. Hansen, Y. Shi, G. Zhang, Structural insights into histone demethylation by JMJD2 family members, Cell, 125 (2006) 691-702. | en |
dcterms.references | Y. Katoh, M. Katoh, Comparative integromics on JMJD2A, JMJD2B and JMJD2C: preferential expression of JMJD2C in undifferentiated ES cells, International journal of molecular medicine, 20 (2007) 269-273. | en |
dcterms.references | L. Wu, K.K. Wary, S. Revskoy, X. Gao, K. Tsang, Y.A. Komarova, J. Rehman, A.B. Malik, Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells, Stem cell reports, 5 (2015) 10-21 | en |
dcterms.references | F. Lizcano, C. Romero, D. Vargas, Regulation of adipogenesis by nuclear receptor PPARgamma is modulated by the histone demethylase JMJD2C, Genetics and molecular biology, 34 (2011) 19-24 | en |
dcterms.references | E. Zhao, J. Ding, Y. Xia, M. Liu, B. Ye, J.H. Choi, C. Yan, Z. Dong, S. Huang, Y. Zha, L. Yang, H. Cui, H.F. Ding, KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism, Cell reports, 14 (2016) 506-519 | en |
dcterms.references | L. Rui, N.C. Emre, M.J. Kruhlak, H.J. Chung, C. Steidl, G. Slack, G.W. Wright, G. Lenz, V.N. Ngo, A.L. Shaffer, W. Xu, H. Zhao, Y. Yang, L. Lamy, R.E. Davis, W. Xiao, J. Powell, D. Maloney, C.J. Thomas, P. Moller, A. Rosenwald, G. Ott, H.K. Muller-Hermelink, K. Savage, J.M. Connors, L.M. Rimsza, E. Campo, E.S. Jaffe, J. Delabie, E.B. Smeland, D.D. Weisenburger, W.C. Chan, R.D. Gascoyne, D. Levens, L.M. Staudt, Cooperative epigenetic modulation by cancer amplicon genes, Cancer cell, 18 (2010) 590-605. | en |
dcterms.references | W. Luo, R. Chang, J. Zhong, A. Pandey, G.L. Semenza, Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression, Proceedings of the National Academy of Sciences of the United States of America, 109 (2012) E3367-3376. | en |
dcterms.references | J. Wu, S. Liu, G. Liu, A. Dombkowski, J. Abrams, R. Martin-Trevino, M.S. Wicha, S.P. Ethier, Z.Q. Yang, Identification and functional analysis of 9p24 amplified genes in human breast cancer, Oncogene, 31 (2012) 333-341 | en |
dcterms.references | J.M. Krill-Burger, M.A. Lyons, L.A. Kelly, C.M. Sciulli, P. Petrosko, U.R. Chandran, M.D. Kubal, S.I. Bastacky, A.V. Parwani, R. Dhir, W.A. LaFramboise, Renal cell neoplasms contain shared tumor type-specific copy number variations, The American journal of pathology, 180 (2012) 2427-2439. | en |
dcterms.references | F. Wein, T. Otto, P. Lambertz, J. Fandrey, M.L. Hansmann, R. Kuppers, Potential role of hypoxia in early stages of Hodgkin lymphoma pathogenesis, Haematologica, 100 (2015) 1320-1326 | en |
dcterms.references | C. Helias, S. Struski, C. Gervais, V. Leymarie, L. Mauvieux, R. Herbrecht, M. Lessard, Polycythemia vera transforming to acute myeloid leukemia and complex abnormalities including 9p homogeneously staining region with amplification of MLLT3, JMJD2C, JAK2, and SMARCA2, Cancer genetics and cytogenetics, 180 (2008) 51-55 | en |
dcterms.references | A. Ishimura, M. Terashima, H. Kimura, K. Akagi, Y. Suzuki, S. Sugano, T. Suzuki, Jmjd2c histone demethylase enhances the expression of Mdm2 oncogene, Biochemical and biophysical research communications, 389 (2009) 366-371 | en |
dcterms.references | M. Wissmann, N. Yin, J.M. Muller, H. Greschik, B.D. Fodor, T. Jenuwein, C. Vogler, R. Schneider, T. Gunther, R. Buettner, E. Metzger, R. Schule, Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression, Nature cell biology, 9 (2007) 347-353 | en |
dcterms.references | H.Y. Lee, E.G. Yang, H. Park, Hypoxia enhances the expression of prostatespecific antigen by modifying the quantity and catalytic activity of Jumonji C domain-containing histone demethylases, Carcinogenesis, 34 (2013) 2706-2715. | en |
dcterms.references | X. Li, S. Dong, Histone demethylase JMJD2B and JMJD2C induce fibroblast growth factor 2: mediated tumorigenesis of osteosarcoma, Medical oncology, 32 (2015) 53 | en |
dcterms.references | C.A. Walsh, J.C. Bolger, C. Byrne, S. Cocchiglia, Y. Hao, A. Fagan, L. Qin, A. Cahalin, D. McCartan, M. McIlroy, P. O'Gaora, J. Xu, A.D. Hill, L.S. Young, Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis, Cancer research, 74 (2014) 2533-2544. | en |
dcterms.references | Z. Zhang, S.Q. Hou, J. He, T. Gu, Y. Yin, W.H. Shen, PTEN regulates PLK1 and controls chromosomal stability during cell division, Cell Cycle, 15 (2016) 2476- 2485 | en |
dcterms.references | I. Garcia-Higuera, E. Manchado, P. Dubus, M. Canamero, J. Mendez, S. Moreno, M. Malumbres, Genomic stability and tumour suppression by the APC/C cofactor Cdh1, Nature cell biology, 10 (2008) 802-811. | en |
dcterms.references | Y. Zhao, K. Ando, E. Oki, A. Ikawa-Yoshida, S. Ida, Y. Kimura, H. Saeki, H. Kitao, M. Morita, Y. Maehara, Aberrations of BUBR1 and TP53 gene mutually associated with chromosomal instability in human colorectal cancer, Anticancer research, 34 (2014) 5421-5427. | en |
dcterms.references | M.A. Vollebergh, J. Jonkers, S.C. Linn, Genomic instability in breast and ovarian cancers: translation into clinical predictive biomarkers, Cellular and molecular life sciences : CMLS, 69 (2012) 223-245 | en |
dcterms.references | I. Kupershmit, H. Khoury-Haddad, S.W. Awwad, N. Guttmann-Raviv, N. Ayoub, KDM4C (GASC1) lysine demethylase is associated with mitotic chromatin and regulates chromosome segregation during mitosis, Nucleic acids research, 42 (2014) 6168-6182 | en |
dcterms.references | J. Garcia, F. Lizcano, KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer, Breast cancer : basic and clinical research, 10 (2016) 169-175. | en |
dcterms.references | T. Potapova, G.J. Gorbsky, The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis, Biology, 6 (2017) | en |
dcterms.references | Y. Huang, L.J. Marton, P.M. Woster, R.A. Casero, Polyamine analogues targeting epigenetic gene regulation, Essays in biochemistry, 46 (2009) 95-110. | en |
dcterms.references | A.A. Lokken, N.J. Zeleznik-Le, Breaking the LSD1/KDM1A addiction: therapeutic targeting of the epigenetic modifier in AML, Cancer cell, 21 (2012) 451- 453. | en |
dcterms.references | T. Schenk, W.C. Chen, S. Gollner, L. Howell, L. Jin, K. Hebestreit, H.U. Klein, A.C. Popescu, A. Burnett, K. Mills, R.A. Casero, Jr., L. Marton, P. Woster, M.D. Minden, M. Dugas, J.C. Wang, J.E. Dick, C. Muller-Tidow, K. Petrie, A. Zelent, Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia, Nature medicine, 18 (2012) 605- 611. | en |
dcterms.references | N.R. Rose, E.C. Woon, G.L. Kingham, O.N. King, J. Mecinovic, I.J. Clifton, S.S. Ng, J. Talib-Hardy, U. Oppermann, M.A. McDonough, C.J. Schofield, Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches, Journal of medicinal chemistry, 53 (2010) 1810-1818. | en |
dcterms.references | R.J. Hopkinson, A. Tumber, C. Yapp, R. Chowdhury, W. Aik, K.H. Che, X.S. Li, J.B. Kristensen, O.N. King, M.C. Chan, K.K. Yeoh, H. Choi, L.J. Walport, C.C. Thinnes, J.T. Bush, C. Lejeune, A.M. Rydzik, N.R. Rose, E.A. Bagg, M.A. McDonough, T. Krojer, W.W. Yue, S.S. Ng, L. Olsen, P.E. Brennan, U. Oppermann, S. Muller-Knapp, R.J. Klose, P.J. Ratcliffe, C.J. Schofield, A. Kawamura, 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation, Chemical science, 4 (2013) 3110-3117. | en |
dcterms.references | K.H. Chang, O.N. King, A. Tumber, E.C. Woon, T.D. Heightman, M.A. McDonough, C.J. Schofield, N.R. Rose, Inhibition of histone demethylases by 4- carboxy-2,2'-bipyridyl compounds, ChemMedChem, 6 (2011) 759-764. | en |
dcterms.references | N.R. Rose, S.S. Ng, J. Mecinovic, B.M. Lienard, S.H. Bello, Z. Sun, M.A. McDonough, U. Oppermann, C.J. Schofield, Inhibitor scaffolds for 2-oxoglutaratedependent histone lysine demethylases, Journal of medicinal chemistry, 51 (2008) 7053-7056. | en |
dcterms.references | M. Sakurai, N.R. Rose, L. Schultz, A.M. Quinn, A. Jadhav, S.S. Ng, U. Oppermann, C.J. Schofield, A. Simeonov, A miniaturized screen for inhibitors of Jumonji histone demethylases, Molecular bioSystems, 6 (2010) 357-364 | en |
dcterms.references | X. Luo, Y. Liu, S. Kubicek, J. Myllyharju, A. Tumber, S. Ng, K.H. Che, J. Podoll, T.D. Heightman, U. Oppermann, S.L. Schreiber, X. Wang, A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases, Journal of the American Chemical Society, 133 (2011) 9451-9456. | en |
dcterms.references | S.K. Zaidi, A.J. Van Wijnen, J.B. Lian, J.L. Stein, G.S. Stein, Targeting deregulated epigenetic control | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |