Mostrar el registro sencillo del ítem
Comportamiento de la histona demetilasa JMJD2a en la regulación génica durante la hipertrofia y diferenciación cardiaca
dc.contributor.advisor | Lizcano Losada, Fernando | |
dc.contributor.author | Rosales Rada, Wendy del Carmen | |
dc.date.accessioned | 2019-02-08T16:10:10Z | |
dc.date.available | 2019-02-08T16:10:10Z | |
dc.date.issued | 2018-02-28 | |
dc.identifier.uri | http://hdl.handle.net/10818/34898 | |
dc.description | 136 páginas | es_CO |
dc.description.abstract | Para conocer el comportamiento molecular de la demetilasa de histonas JMJD2a tanto en los procesos de diferenciación celular como en el desarrollo de hipertrofia cardiaca, se empleó la línea celular H9C2(2-1) como modelo de estandarización utilizando varios inductores en diferentes concentraciones, sobreexpresando JMJD2a y silenciando con el uso de ARNsi. Para aproximarnos a un modelo humano y una vez estandarizado el proceso, se utilizaron los cardiomiocitos iCell™ y se observó que al inducir hipertrofia empleando neurohormonas, especialmente Ang II y ET-1, el comportamiento de JMJD2a tiende al aumento, al igual que BNP. Al sobreexpresar JMJD2a, los niveles de expresión de BNP se incrementaban, mientras al silenciar, este marcador disminuía su expresión. Además se quiso conocer el comportamiento de JMJD2a en un modelo en el cual se reprogramaron células hiPSCs, se diferenciaron a células cardiacas y se obtuvo clones KO-JMJD2a usando la tecnología CRISPR/Cas9. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Regulación genética | es_CO |
dc.subject | Hipertrofia | es_CO |
dc.subject | Endotelina-1 | es_CO |
dc.title | Comportamiento de la histona demetilasa JMJD2a en la regulación génica durante la hipertrofia y diferenciación cardiaca | es_CO |
dc.type | doctoralThesis | es_CO |
dc.publisher.program | Doctorado en Biociencias | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.identifier.local | 268235 | |
dc.identifier.local | TE09535 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Doctor en Biociencias | es_CO |
dcterms.references | World Health Organization. Cardiovascular diseases (CVDs). 2015. | eng |
dcterms.references | World Health Organization. World Health Statistics 2011. vol. 2010. 2011. | eng |
dcterms.references | World Health Organization. Global status report on noncommunicable diseases 2010. Ginebra, Suiza: 2011. doi:978 92 4 156422 9. | eng |
dcterms.references | Zhang Q-J, Liu Z-P. Histone methylations in heart development, congenital and adult heart diseases. Epigenomics 2015;7:321–30. doi:10.2217/epi.14.60. | eng |
dcterms.references | Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006;7:589–600. doi:10.1038/nrm1983 | eng |
dcterms.references | Reeves GR, Whellan DJ. Recent advances in cardiac rehabilitation. Curr Opin Cardiol 2010;25:589–96. doi:http://dx.doi.org/10.1097/HCO.0b013e32833f0208. | eng |
dcterms.references | Walport LJ, Hancock RL, Dunne K, Walport LJ, Flashman E, Kawamura A. Epigenetic regulation by histone demethylases in hypoxia. Epigenomics 2015;7:1–21. doi:10.2217/epi.15.24. | eng |
dcterms.references | Task A, Elliott PM, Uk C, Anastasakis A, Germany MAB, Germany MB, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J 2014;35:2733–79. doi:10.1093/eurheartj/ehu284. | eng |
dcterms.references | Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 1995;92:785–9. doi:10.1161/01.CIR.92.4.785. | eng |
dcterms.references | Kehat I, Molkentin JD. Molecular Pathways Underlying Cardiac Remodeling During Pathophysiological Stimulation. Circulation 2010;122:2727–35. doi:10.1161/CIRCULATIONAHA.110.942268. | eng |
dcterms.references | Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2012;14:38–48. doi:10.1038/nrm3495. | eng |
dcterms.references | Hernández A, Duque J, Rosales W, Lizcano F. Perspectivas moleculares en cardiopatía hipertrófica: abordaje epigenético desde la modificación de la cromatina. Rev Colomb Cardiol 2016. doi:10.1016/j.rccar.2016.04.019. | eng |
dcterms.references | Stenzig J, Hirt MN, L??ser A, Bartholdt LM, Hensel JT, Werner TR, et al. DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors. Basic Res Cardiol 2016;111:9. doi:10.1007/s00395-015-0528-z. | eng |
dcterms.references | Li F, Wang X, Capasso JM, Gerdes a M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996;28:1737–46. doi:10.1006/jmcc.1996.0163. | eng |
dcterms.references | Hill JA. Braking Bad Hypertrophy. N Engl J Med 2015;372:2160–2. doi:10.1056/NEJMcibr1504187. | eng |
dcterms.references | Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 2008;3:69–84. doi:10.1016/j.stem.2008.06.009. | eng |
dcterms.references | Olver TD, Ferguson BS, Laughlin MH. Molecular Mechanisms for Exercise Training-Induced Changes in Vascular Structure and Function: Skeletal Muscle, Cardiac Muscle, and the Brain. Prog. Mol. Biol. Transl. Sci., vol. 135, 2015, p. 227–57. doi:10.1016/bs.pmbts.2015.07.017. | eng |
dcterms.references | Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 2008;40:2023–39. doi:10.1016/j.biocel.2008.02.020. | eng |
dcterms.references | Barry SP, Townsend PA. What Causes a Broken Heart-Molecular Insights into Heart Failure. Int Rev Cell Mol Biol 2010;284:113–79. doi:10.1016/S1937-6448(10)84003-1. | eng |
dcterms.references | Barnes J, Pat B, Chen Y-W, Powell PC, Bradley WE, Zheng J, et al. Wholegenome profiling highlights the molecular complexity underlying eccentric cardiac hypertrophy. Ther Adv Cardiovasc Dis 2014;8:97–118. doi:10.1177/1753944714527490 | eng |
dcterms.references | Tian T, Liu Y, Zhou X, Song L. Progress in the molecular genetics of hypertrophic cardiomyopathy: A mini-review. Gerontology 2013;59:199–205. doi:10.1159/000346146. | eng |
dcterms.references | Schaub MC, Hefti M a, Harder B a, Eppenberger HM. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes. J Mol Med (Berl) 1997;75:901–20. doi:10.1007/s001090050182. | eng |
dcterms.references | Mohamed BA, Schnelle M, Khadjeh S, Lbik D, Herwig M, Linke WA, et al. Molecular and structural transition mechanisms in long-term volume overload. Eur J Heart Fail 2016;18:362–71. doi:10.1002/ejhf.465. | eng |
dcterms.references | LaPointe MC. Molecular regulation of the brain natriuretic peptide gene. Peptides 2005;26:944–56. doi:10.1016/j.peptides.2004.08.028. | eng |
dcterms.references | Ogawa Y, Itoh H, Nakao K. Molecular biology and biochemistry of natriuretic peptide family. Clin Exp Pharmacol Physiol 1995;22:49–53. | eng |
dcterms.references | LeGoff L, Lecuit T. Mechanical forces and growth in animal tissues. Cold Spring Harb Perspect Biol 2016;8. doi:10.1101/cshperspect.a019232. | eng |
dcterms.references | Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88:1112–9. doi:10.1161/hh1101.091862. | eng |
dcterms.references | Stawowy P, Margeta C, Blaschke F, Lindschau C, Spencer-Hänsch C, Leitges M, et al. Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts. Cardiovasc Res 2005;67:50–9. doi:10.1016/j.cardiores.2005.03.002. | eng |
dcterms.references | Woischwill C, Karczewski P, Bartsch H, Luther H-P, Kott M, Haase H, et al. Regulation of the human atrial myosin light chain 1 promoter by Ca2+- calmodulin-dependent signaling pathways. FASEB J 2005;19:503–11. doi:10.1096/fj.04-2201com. | eng |
dcterms.references | Duquesnes N, Vincent F, Morel E, Lezoualc’h F, Crozatier B. The EGF receptor activates ERK but not JNK Ras-dependently in basal conditions but ERK and JNK activation pathways are predominantly Ras-independent during cardiomyocyte stretch. Int J Biochem Cell Biol 2009;41:1173–81. doi:10.1016/j.biocel.2008.09.032. | eng |
dcterms.references | Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X, et al. Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res Cardiol 2013;108. doi:10.1007/s00395-013-0333-5. | eng |
dcterms.references | Du J, Guan T, Zhang H, Xia Y, Liu F, Zhang Y. Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Res Commun 2008;368:402–7. doi:10.1016/j.bbrc.2008.01.099. | eng |
dcterms.references | Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 2009;15:75–83. doi:10.1038/nm.1893. | eng |
dcterms.references | Lorenz K, Schmitt JP, Vidal M, Lohse MJ. Cardiac hypertrophy: Targeting Raf/MEK/ERK1/2-signaling. Int J Biochem Cell Biol 2009;41:2351–5. doi:10.1016/j.biocel.2009.08.002. | eng |
dcterms.references | Takahashi N, Saito Y, Kuwahara K, Harada M, Tanimoto K, Nakagawa Y, et al. Hypertrophic responses to cardiotrophin-1 are not mediated by STAT3, but via a MEK5-ERK5 pathway in cultured cardiomyocytes. J Mol Cell Cardiol 2005;38:185–92. doi:10.1016/j.yjmcc.2004.10.016. | eng |
dcterms.references | Hayashi M, Lee JD. Role of the BMK1/ERK5 signaling pathway: Lessons from knockout mice. J Mol Med 2004;82:800–8. doi:10.1007/s00109-004-0602-8. | eng |
dcterms.references | Waddington CH. The Epigenotype. Endeavour 1942:18–20. doi:10.1093/ije/dyr184. | eng |
dcterms.references | Waddington CH. The epigenotype. 1942. Int J Epidemiol 2012;41:10–3. doi:10.1093/ije/dyr184. | eng |
dcterms.references | Gilbert SF. Commentary: “The epigenotype” by C.H. Waddington. Int J Epidemiol 2012;41:20–3. doi:10.1093/ije/dyr186. | eng |
dcterms.references | Jablonka E, Lamm E. Commentary: The epigenotype-a dynamic network view of development. Int J Epidemiol 2012;41:16–20. doi:10.1093/ije/dyr185. | eng |
dcterms.references | Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, et al. Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 2011;147:1628–39. doi:10.1016/j.cell.2011.09.057. | eng |
dcterms.references | Low FM, Gluckman PD, Hanson MA. Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases. Epigenomics 2011;3:279–94. doi:10.2217/epi.11.17. | eng |
dcterms.references | O’Sullivan L, Little MH, Combes AN, Moritz KM. Epigenetics and developmental programming of adult onset diseases. Pediatr Nephrol 2012;27:2175–82. doi:10.1007/s00467-012-2108-x. | eng |
dcterms.references | Weinhold B. Epigenetics: the science of change. Environ Heal Perspect 2006;114:160–7. doi:10.1289/ehp.114-a160. | eng |
dcterms.references | Lomberk G, Mathison AJ, Grzenda A, Seo S, DeMars CJ, Rizvi S, et al. Sequence-specific recruitment of heterochromatin protein 1 via interaction with Krüppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J Biol Chem 2012;287:13026–39. doi:10.1074/jbc.M112.342634. | eng |
dcterms.references | Chen R, Kang R, Fan X-G, Tang D. Release and activity of histone in diseases. Cell Death Dis 2014;5:e1370. doi:10.1038/cddis.2014.337. | eng |
dcterms.references | Tingare A, Thienpont B, Roderick HL. Epigenetics in the heart: the role of histone modifications in cardiac remodelling. Biochem Soc Trans 2013;41:789–96. doi:10.1042/BST20130012. | eng |
dcterms.references | Cao DJ. Epigenetic regulation and heart failure. Expert Rev Cardiovasc Ther 2014;12:1087–98. doi:10.1586/14779072.2014.942285. | eng |
dcterms.references | Hohl M, Wagner M, Reil JC, Müller SA, Tauchnitz M, Zimmer AM, et al. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 2013;123:1359–70. doi:10.1172/JCI61084. | eng |
dcterms.references | Gillette TG, Hill JA. Readers, writers, and erasers: Chromatin as the whiteboard of heart disease. Circ Res 2015;116:1245–53. doi:10.1161/CIRCRESAHA.116.303630. | eng |
dcterms.references | Berry JM, Cao DJ, Rothermel BA, Hill JA. Histone deacetylase inhibition in the treatment of heart disease. Expert Opin Drug Saf 2008;7:53–67. doi:10.1517/14740338.7.1.53. | eng |
dcterms.references | Mckinsey TA. Therapeutic Potential for HDAC Inhibitors in the Heart. Annu Rev Pharmacol Toxicol 2012;52:303–19. doi:10.1146/annurev-pharmtox010611-134712. | eng |
dcterms.references | Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev 2009;23:781–3. doi:10.1101/gad.1787609. | eng |
dcterms.references | Sui W, Cao C, Che W, Chen J, Xue W, Liu P, et al. Comparative analyses of histone H3K9 trimethylations in the heart and spleen of normal humans. Genet Mol Res 2014;13:1697–706. doi:10.4238/2014.January.14.5. | eng |
dcterms.references | Shiau C, Trnka MJ, Bozicevic A, Torres IO, Al-Sady B, Burlingame AL, et al. Reconstitution of nucleosome demethylation and catalytic properties of a jumonji histone demethylase. Chem Biol 2013;20:494–9. doi:10.1016/j.chembiol.2013.03.008. | eng |
dcterms.references | Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000;406:593–9. doi:10.1038/35020506. | eng |
dcterms.references | Cheng X. Structural and functional coordination of dna and histone methylation. Cold Spring Harb Perspect Biol 2014;6. doi:10.1101/cshperspect.a018747. | eng |
dcterms.references | Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta - Mol Basis Dis 2013;1832:2414–24. doi:10.1016/j.bbadis.2013.07.023. | eng |
dcterms.references | Black JC, Van Rechem C, Whetstine JR. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol Cell 2012;48:491–507. doi:10.1016/j.molcel.2012.11.006. | eng |
dcterms.references | Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004;119:941–53. doi:10.1016/j.cell.2004.12.012. | eng |
dcterms.references | Hof F. Host-guest chemistry that directly targets lysine methylation: synthetic host molecules as alternatives to bio-reagents. Chem Commun 2016. doi:10.1039/C6CC04771H. | eng |
dcterms.references | Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005;6:838–49. doi:10.1038/nrm1761. | eng |
dcterms.references | Suzuki T, Ozasa H, Itoh Y, Zhan P, Sawada H, Mino K, et al. Identification of the KDM2/7 histone lysine demethylase subfamily inhibitor and its antiproliferative activity. J Med Chem 2013;56:7222–31. doi:10.1021/jm400624b. | eng |
dcterms.references | Shi YG, Tsukada Y. The discovery of histone demethylases. Cold Spring Harb Perspect Biol 2013;5. doi:10.1101/cshperspect.a017947. | eng |
dcterms.references | Bannister AJ, Schneider R, Kouzarides T. Histone methylation: Dynamic or static? Cell 2002;109:801–6. doi:10.1016/S0092-8674(02)00798-5 | eng |
dcterms.references | Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005;120:169–81. doi:10.1016/j.cell.2005.01.001. | eng |
dcterms.references | Vakoc CR, Sachdeva MM, Wang H, Blobel GA. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 2006;26:9185–95. doi:10.1128/MCB.01529-06. | eng |
dcterms.references | Lee S, Lee JW, Lee SK. UTX, a Histone H3-Lysine 27 Demethylase, Acts as a Critical Switch to Activate the Cardiac Developmental Program. Dev Cell 2012. doi:10.1016/j.devcel.2011.11.009. | eng |
dcterms.references | Mysliwiec MR, Carlson CD, Tietjen J, Hung H, Ansari AZ, Lee Y. Jarid2 (Jumonji, AT rich interactive domain 2) regulates NOTCH1 expression via histone modification in the developing heart. J Biol Chem 2012;287:1235–41. doi:10.1074/jbc.M111.315945. | eng |
dcterms.references | Lee Y, Song AJ, Baker R, Micales B, Conway SJ, Lyons GE. Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 2000;86:932–8. doi:10.1161/01.RES.86.9.932. | eng |
dcterms.references | Couture J-F, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC. Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol 2007. doi:10.1038/nsmb1273. | eng |
dcterms.references | Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, et al. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell 2013;154:541–55. doi:10.1016/j.cell.2013.06.051. | eng |
dcterms.references | Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 2006;442:312–6. doi:10.1038/nature04853. | eng |
dcterms.references | Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 2006;7:715–27. doi:10.1038/nrg1945. | eng |
dcterms.references | Verrier L, Escaffit F, Chailleux C, Trouche D, Vandromme M. A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation. PLoS Genet 2011;7. doi:10.1371/journal.pgen.1001390. | eng |
dcterms.references | Gray SG, Iglesias AH, Lizcano F, Villanueva R, Camelo S, Jingu H, et al. Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. J Biol Chem 2005;280:28507–18. doi:10.1074/jbc.M413687200. | eng |
dcterms.references | Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006;38:431–40. doi:10.1038/ng1760. | eng |
dcterms.references | Strobl-Mazzulla PH, Sauka-Spengler T, Bronner-Fraser M. Histone demethylase JmjD2A regulates neural crest specification. Dev Cell 2010;19:460–8. doi:10.1016/j.devcel.2010.08.009. | eng |
dcterms.references | Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006;439:811–6. doi:10.1038/nature04433. | eng |
dcterms.references | Huang Y, Fang J, Bedford MT, Zhang Y, Xu R-M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 2006;312:748–51. doi:10.1126/science.1125162. | eng |
dcterms.references | Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 2011;121:2447–56. doi:10.1172/JCI46277. | eng |
dcterms.references | Human Protein Reference Database. Jumonji 2005. http://www.hprd.org/browse/interactions?hprd_id=03355&isoform_id=03355 _1&isoform_name= (accessed January 12, 2017). | eng |
dcterms.references | Lee Y, Shioi T, Kasahara H, Jobe SM, Wiese RJ, Markham BE, et al. The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 1998;18:3120–9. | eng |
dcterms.references | Sdek P, Zhao P, Wang Y, Huang CJ, Ko CY, Butler PC, et al. Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol 2011;194:407–23. doi:10.1083/jcb.201012049. | eng |
dcterms.references | Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, et al. Cardiac-specific deletion of gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 2006. doi:10.1161/01.RES.0000215985.18538.c4. | eng |
dcterms.references | Berry JM, Naseem RH, Rothermel BA, Hill JA. Models of cardiac hypertrophy and transition to heart failure. Drug Discov Today Dis Model 2007;4:197–206. doi:10.1016/j.ddmod.2007.06.003. | eng |
dcterms.references | Maximilian Buja L, Vela D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol 2008;17:349–74. doi:10.1016/j.carpath.2008.02.004. | eng |
dcterms.references | Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for Cardiomyocyte Renewal in Humans. vol. 324. 2009. doi:10.1126/science.1164680. | eng |
dcterms.references | Garbern J, Mummery C, Lee R. Model Systems for Cardiovascular Regenerative biology. Cold Spring Harb Perspect Med 2013;1:1–18. doi:10.3402/arb.v1.25247. | eng |
dcterms.references | Galvão V, Miranda JGV, Ribeiro-dos-Santos R. Development of a twodimensional agent-based model for chronic chagasic cardiomyopathy after stem cell transplantation. Bioinformatics 2008;24:2051–6. doi:10.1093/bioinformatics/btn362. | eng |
dcterms.references | Sirois E, Sun W. Computational Evaluation of Platelet Activation Induced by a Bioprosthetic Heart Valve. Artif Organs 2011;35:157–65. doi:10.1111/j.1525-1594.2010.01048.x. | eng |
dcterms.references | Curtis MW, Russell B. Micromechanical regulation in cardiac myocytes and fibroblasts: Implications for tissue remodeling. Pflugers Arch Eur J Physiol 2011;462:105–17. doi:10.1007/s00424-011-0931-8. | eng |
dcterms.references | Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. Vitr Cell Dev Biol - Anim 2011;47:125–31. doi:10.1007/s11626-010-9368-1. | eng |
dcterms.references | Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 2005;39:133–47. doi:10.1016/j.yjmcc.2005.03.003. | eng |
dcterms.references | Schulman I, Hare J. Key developments in stem cell therapy in cardiology. Regen Med 2012;114:369–77. doi:10.2217/rme.12.80. | eng |
dcterms.references | Christoforou N, Liau B, Chakraborty S, Chellapan M, Bursac N, Leong KW. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues. PLoS One 2013;8. doi:10.1371/journal.pone.0065963. | eng |
dcterms.references | Von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 2012;109:2394–9. doi:10.1073/pnas.1116136109. | eng |
dcterms.references | Kirkpatrick CJ, Fuchs S, Unger RE. Co-culture systems for vascularization - Learning from nature. Adv Drug Deliv Rev 2011;63:291–9. doi:10.1016/j.addr.2011.01.009. | eng |
dcterms.references | Chung BG, Lee K-H, Khademhosseini A, Lee S-H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 2012;12:45. doi:10.1039/c1lc20859d. | eng |
dcterms.references | Zhang YS, Aleman J, Arneri A, Bersini S, Shin SR, Dokmeci MR, et al. From Cardiac Tissue Engineering to Heart-on-a-Chip: Beating Challengues. Biomed Mater 2016;10:1–21. doi:10.1088/1748-6041/10/3/034006.From. | eng |
dcterms.references | Tulloch NL, Muskheli V, Razumova M V., Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011;109:47–59. doi:10.1161/CIRCRESAHA.110.237206. | eng |
dcterms.references | Louch W, Sheehan K, Wolska B. Methods in Cardiomyocyte Isolation, Culture, and Gene Transfer. NIH Public Access 2012;51:288–98. doi:10.1016/j.yjmcc.2011.06.012.Methods. | eng |
dcterms.references | Badylak SF, Weiss DJ, Caplan A, MacChiarini P. Engineered whole organs and complex tissues. Lancet 2012;379:943–52. doi:10.1016/S0140- 6736(12)60073-7. | eng |
dcterms.references | Poss KD. Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol 2007;18:36–45. doi:10.1016/j.semcdb.2006.11.009. | eng |
dcterms.references | Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, et al. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012;111:131–50. doi:10.1161/RES.0b013e3182582523. | eng |
dcterms.references | Van Der Spoel TIG, Jansen Of Lorkeers SJ, Agostoni P, Van Belle E, Gyngysi M, Sluijter JPG, et al. Human relevance of pre-clinical studies in stem cell therapy: Systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 2011;91:649–58. doi:10.1093/cvr/cvr113. | eng |
dcterms.references | Proos Vedin N, Lundberg M. Protein effects in non-heme iron enzyme catalysis: insights from multiscale models. JBIC J Biol Inorg Chem 2016. doi:10.1007/s00775-016-1374-7. | eng |
dcterms.references | Sreejit P, Kumar S, Verma RS. An improved protocol for primary culture of cardiomyocyte from neonatal mice. Vitr Cell Dev Biol - Anim 2008;44:45–50. doi:10.1007/s11626-007-9079-4. | eng |
dcterms.references | Zordoky BNM, El-Kadi AOS. H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. J Pharmacol Toxicol Methods 2007;56:317–22. doi:10.1016/j.vascn.2007.06.001. | eng |
dcterms.references | Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 1976;98:367–81. doi:10.1016/0014-4827(76)90447-X. | eng |
dcterms.references | Kögler G, Sensken S, Wernet P. Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 2006;34:1589–95. doi:10.1016/j.exphem.2006.07.011. | eng |
dcterms.references | Zhang D, Yoon H-G, Wong J. JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scutelike homologue 2 (ASCL2/Hash2). Mol Cell Biol 2005;25:6404–14. doi:10.1128/MCB.25.15.6404-6414.2005. | eng |
dcterms.references | Salifou K, Ray S, Verrier L, Aguirrebengoa M, Trouche D, Panov KI, et al. The histone demethylase JMJD2A/KDM4A links ribosomal RNA transcription to nutrients and growth factors availability. Nat Commun 2016;7:10174. doi:10.1038/ncomms10174. | eng |
dcterms.references | Donato MT, Lahoz a, Castell J V, Gómez-Lechón MJ. Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab 2008;9:1–11. | eng |
dcterms.references | Domcke S, Sinha R, Levine D a, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun 2013;4:2126. doi:10.1038/ncomms3126. | eng |
dcterms.references | Kaur G, Dufour JM. Cell lines: Valuable tools or useless artifacts. Spermatogenesis 2012;2:1–5. doi:10.4161/spmg.19885. | eng |
dcterms.references | Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev 2010;15:125–32. doi:10.1007/s10741-008-9125-7. | eng |
dcterms.references | Gupta MK, Neelakantan T V, Sanghamitra M, Tyagi RK, Dinda A, Maulik S, et al. An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts. Antioxid Redox Signal 2006;8:1081–93. doi:10.1089/ars.2006.8.1081. | eng |
dcterms.references | Pilka ES, James T, Lisztwan JH. Structural definitions of Jumonji family demethylase selectivity. Drug Discov Today 2014. doi:10.1016/j.drudis.2014.12.013. | eng |
dcterms.references | Yang C, Wang Y, Liu H, Li N, Sun Y, Liu Z, et al. Ghrelin protects H9c2 cardiomyocytes from angiotensin II-induced apoptosis through the endoplasmic reticulum stress pathway. J Cardiovasc Pharmacol 2012;59:465–71. doi:10.1097/FJC.0b013e31824a7b60. | eng |
dcterms.references | Qin F, Patel R, Yan C, Liu W. NADPH oxidase is involved in angiotensin IIinduced apoptosis in H9C2 cardiac muscle cells: Effects of apocynin. Free Radic Biol Med 2006;40:236–46. doi:10.1016/j.freeradbiomed.2005.08.010. | eng |
dcterms.references | Wu QQ, Zong J, Gao L, Dai J, Yang Z, Xu M, et al. Sulforaphane protects H9c2 cardiomyocytes from angiotensin II-induced hypertrophy. Herz 2014;39:390–6. doi:10.1007/s00059-013-3849-4. | eng |
dcterms.references | Stuck BJ, Lenski M, Böhm M, Laufs U. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem 2008;283:32562–9. doi:10.1074/jbc.M801904200. | eng |
dcterms.references | Vanezis AP, Rodrigo GC, Squire IB, Samani NJ. Remote ischaemic conditioning and remodelling following myocardial infarction: current evidence and future perspectives. Heart Fail Rev 2016;21:635–43. doi:10.1007/s10741-016-9560-9. | eng |
dcterms.references | Hong SJ. Mechanism of endothelin-1-induced cytosolic Ca2+ mobility in cultured H9c2 myocardiac ventricular cells. Cell Signal 2002;14:811–7. doi:10.1016/S0898-6568(02)00020-7. | eng |
dcterms.references | Bupha-Intr T, Haizlip KM, Janssen PML. Role of endothelin in the induction of cardiac hypertrophy in vitro. PLoS One 2012;7:1–9. doi:10.1371/journal.pone.0043179. | eng |
dcterms.references | Weng X, Yu L, Liang P, Li L, Dai X, Zhou B, et al. A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 2015;82:48–58. doi:10.1016/j.yjmcc.2015.02.010. | eng |
dcterms.references | Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014;173:1–11. doi:10.1016/j.ijcard.2014.02.008. | eng |
dcterms.references | Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663–76. doi:10.1016/j.cell.2006.07.024. | eng |
dcterms.references | Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–72. doi:10.1016/j.cell.2007.11.019. | eng |
dcterms.references | Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001;11:1553– 8. doi:10.1016/S0960-9822(01)00459-6. | eng |
dcterms.references | Thomson JA. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science (80- ) 1998;282:1145–7. doi:10.1126/science.282.5391.1145. | eng |
dcterms.references | Yamanaka S. Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell 2012;10:678–84. doi:10.1016/j.stem.2012.05.005. | eng |
dcterms.references | Tsai P-H, Chang Y-C, Lee Y-Y, Ko Y-L, Yang Y-H, Lin C-F, et al. Differentiation of blood T cells: Reprogramming human induced pluripotent stem cells into neuronal cells. J Chinese Med Assoc 2015;78:353–9. doi:10.1016/j.jcma.2015.03.007. | eng |
dcterms.references | Silva M, Daheron L, Hurley H, Bure K, Barker R, Carr AJ, et al. Generating iPSCs: Translating cell reprogramming science into scalable and robust biomanufacturing strategies. Cell Stem Cell 2015;16:13–7. doi:10.1016/j.stem.2014.12.013. | eng |
dcterms.references | Lieu PT, Fontes A, Vemuri MC, Macarthur CC. Generation of induced pluripotent stem cells with CytoTune, a non-integrating Sendai virus. Methods Mol Biol 2013;997:45–56. doi:10.1007/978-1-62703-348-0_5. | eng |
dcterms.references | Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, et al. A comparison of non-integrating reprogramming methods. Nat Biotechnol 2015;33:58–63. doi:10.1038/nbt.3070. | eng |
dcterms.references | Fusaki N, Ban H, Nishiyama A, Koichi Ã, Ã1 S, Hasegawa M, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:348–62. doi:10.2183/pjab.85.348. | eng |
dcterms.references | Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol - Hear Circ Physiol 2011;301:H2006–17. doi:10.1152/ajpheart.00694.2011. | eng |
dcterms.references | Fine M, Lu F-M, Lin M-J, Moe O, Wang H-R, Hilgemann DW. Human-induced pluripotent stem cell-derived cardiomyocytes for studies of cardiac ion transporters. Am J Physiol Cell Physiol 2013;305:C481-91. doi:10.1152/ajpcell.00143.2013. | eng |
dcterms.references | Zhi D, Lrvin MR, Gu CC, Stoddard AJ, Lorier R, Matter A, et al. Whole-exome sequencing and an iPSC-derived cardiomyocyte model provides a powerful platform for gene discovery in left ventricular hypertrophy. Front Genet 2012;3:1–10. doi:10.3389/fgene.2012.00092. | eng |
dcterms.references | CDI CDI. Applying Transfection Technologies to Create Novel Screening Models 2015:10–3. | eng |
dcterms.references | Harding SE, Ali NN, Brito-Martins M, Gorelik J. The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. Pharmacol Ther 2007;113:341–53. doi:10.1016/j.pharmthera.2006.08.008. | eng |
dcterms.references | ] Rana P, Anson B, Engle S, Will Y. Characterization of human-induced pluripotent stem cell-derived cardiomyocytes: Bioenergetics and utilization in safety screening. Toxicol Sci 2012;130:117–31. doi:10.1093/toxsci/kfs233. | eng |
dcterms.references | Das PP, Shao Z, Beyaz S, Apostolou E, Pinello L, Angeles ADL, et al. Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Mol Cell 2014;53:32–48. doi:10.1016/j.molcel.2013.11.011. | eng |
dcterms.references | Lizcano F, Romero C, Vargas D. Regulation of adipogenesis by nuclear receptor PPARƴ is modulated by the histone demethylase JMJD2C. Genet Mol Biol 2011;34:19–24. doi:10.1590/S1415-47572010005000105. | eng |
dcterms.references | Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA, et al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci U S A 2012;109:13004–9. doi:10.1073/pnas.1210787109. | eng |
dcterms.references | CDI CDI. Modeling Cardiac Hypertrophy: Endothelin-1 Induction 2014;1:1–7. | eng |
dcterms.references | Rabkin SW, Klassen SS. Jumonji is a potential regulatory factor mediating nitric oxide-induced modulation of cardiac hypertrophy. J Cardiovasc Med (Hagerstown) 2009;10:206–11. doi:10.2459/JCM.0b013e3283212ecd. | eng |
dcterms.references | Chung YG, Matoba S, Liu Y, Cha KY, Chung YG, Matoba S, et al. Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells. Cell Stem Cell 2015:1–9. doi:10.1016/j.stem.2015.10.001. | eng |
dcterms.references | Wu L, Wary KK, Revskoy S, Gao X, Tsang K, Komarova YA, et al. Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Stem Cell Reports 2015;5:10–21. doi:10.1016/j.stemcr.2015.05.016. | eng |
dcterms.references | Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013;12:689–98. doi:10.1016/j.stem.2013.05.008. | eng |
dcterms.references | Aasen T, Izpisúa Belmonte JC. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 2010;5:371–82. doi:10.1038/nprot.2009.241. | eng |
dcterms.references | Chen KG, Mallon BS, Mckay RDG, Robey PG. Protocol Review Human Pluripotent Stem Cell Culture : Considerations for Maintenance , Expansion , and Therapeutics. Stem Cell 2014;14:13–26. doi:10.1016/j.stem.2013.12.005. | eng |
dcterms.references | Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feederfree growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001;19:971–4. doi:10.1038/nbt1001-971. | eng |
dcterms.references | He J-Q, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: Action potential characterization. Circ Res 2003;93:32–9. doi:10.1161/01.RES.0000080317.92718.99. | eng |
dcterms.references | Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108:407–14. doi:10.1172/JCI200112131. | eng |
dcterms.references | Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A 2011;108:14234–9. doi:1103509108 [pii]\r10.1073/pnas.1103509108. | eng |
dcterms.references | Bitzer M, Armeanu S, Lauer UM, Neubert WJ. Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 2003. doi:10.1002/jgm.426. | eng |
dcterms.references | Kattman SJ, Koonce CH, Swanson BJ, Anson BD. Stem Cells and Their Derivatives: A Renaissance in Cardiovascular Translational Research. J Cardiovasc Transl Res 2010;4:66–72. doi:10.1007/s12265-010-9235-1. | eng |
dcterms.references | Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 2013;8:162–75. doi:10.1038/nprot.2012.150. | eng |
dcterms.references | Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and Specificity of CRISPR-Cas9 Genome Editing Technologies for Human Gene Therapy. Hum Gene Ther 2015;26:443–51. doi:10.1089/hum.2015.074. | eng |
dcterms.references | Hendriks WT, Jiang X, Daheron L, Cowan CA. TALEN- and CRISPR/Cas9- mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 2015;2015:5B.3.1-5B.3.25. doi:10.1002/9780470151808.sc05b03s34. | eng |
dcterms.references | Hendriks WT, Warren CR, Cowan CA. Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions. Cell Stem Cell 2016;18:53– 65. doi:10.1016/j.stem.2015.12.002. | eng |
dcterms.references | Ramirez JM, Gerbal-Chaloin S, Milhavet O, Qiang B, Becker F, Assou S, et al. Brief report: Benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: All markers are not equal. Stem Cells 2011;29:1469–74. doi:10.1002/stem.681. | eng |
dcterms.references | Braam SR, Denning C, Matsa E, Young LE, Passier R, Mummery CL. Feederfree culture of human embryonic stem cells in conditioned medium for efficient genetic modification. NatProtoc 2008;3:1435–43. | |
dcterms.references | Chen KG, Mallon BS, Hamilton RS, Kozhich OA, Park K, Hoeppner DJ, et al. Non-colony type monolayer culture of human embryonic stem cells. Stem Cell Res 2012;9:237–48. doi:10.1016/j.scr.2012.06.003. | eng |
dcterms.references | Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (80- ) 2014;346:1258096–1258096. doi:10.1126/science.1258096. | eng |
dcterms.references | González F, Zhu Z, Shi Z-D, Lelli K, Verma N, Li Q V, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 2014;15:215–26. doi:10.1038/jid.2014.371. | eng |
dcterms.references | Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonicstem-cell-derived population. Nature 2008;453:524–8. doi:10.1038/nature06894. | eng |
dcterms.references | Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotech 2011;29:1011–8. | eng |
dcterms.references | Duren Z, Wang Y. A systematic method to identify modulation of transcriptional regulation via chromatin activity reveals regulatory network during mESC differentiation. Sci Rep 2016;6:22656. doi:10.1038/srep22656. | eng |
dcterms.references | Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok W-M, Wu JC, et al. High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry. J Vis Exp 2014:52010. doi:10.3791/52010. | eng |
dcterms.references | Kim T-G, Chen J, Sadoshima J, Lee Y. Jumonji represses atrial natriuretic factor gene expression by inhibiting transcriptional activities of cardiac transcription factors. Mol Cell Biol 2004;24:10151–60. doi:10.1128/MCB.24.23.10151-10160.2004 | eng |
dcterms.references | Mallette FA, Richard S. JMJD2A Promotes Cellular Transformation by Blocking Cellular Senescence through Transcriptional Repression of the Tumor Suppressor CHD5. Cell Rep 2016;2:1233–43. doi:10.1016/j.celrep.2012.09.033. | eng |
dcterms.references | Berry WL, Janknecht R. KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells. Cancer Res 2013;73:2936–42. doi:10.1158/0008-5472.CAN-12-4300. | eng |
dcterms.references | Ding X, Pan H, Li J, Zhong Q, Chen X, Dry SM, et al. Epigenetic Activation of AP-1 Promotes Squamous Cell Carcinoma Metastasis. Sci Signal 2013;6:ra28.1-15. doi:10.1126/scisignal.2003884. | eng |
dcterms.references | Shin S, Janknecht R. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun 2007;359:742–6. doi:10.1016/j.bbrc.2007.05.179. | eng |
dcterms.references | Terndrup Pedersen M, Kooistra SM, Radzisheuskaya A, Laugesen A, Vilstrup Johansen J, Hayward DG, et al. Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development. EMBO J 2016;35:1550–64. doi:10.15252/embj. | eng |
dcterms.references | ] Kungulovski G, Jeltsch A. Epigenome Editing: State of the Art, Concepts, and Perspectives. Trends Genet 2016;32:101–13. doi:10.1016/j.tig.2015.12.001. | eng |
dcterms.references | Steinhauser ML, Lee RT. Cardiovascular Regeneration: Pushing and Pulling on Progenitors. Cell Stem Cell 2009;4:277–8. doi:10.1016/j.stem.2009.03.008. | eng |
dcterms.references | Aguirre A, Sancho-Martinez I, Izpisua Belmonte JC. Reprogramming toward heart regeneration: Stem cells and beyond. Cell Stem Cell 2013;12:275–84. doi:10.1016/j.stem.2013.02.008 | eng |
dcterms.references | Ye Z, Zhou Y, Cai H, Tan W. Myocardial regeneration: Roles of stem cells and hydrogels. Adv Drug Deliv Rev 2011;63:688–97. doi:10.1016/j.addr.2011.02.007. | eng |
dcterms.references | Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid-derived progenitor cells as single cell source. Circulation 2007;116:64– 71. doi:10.1161/CIRCULATIONAHA.106.681494. | eng |
dcterms.references | Wei HJ, Chen CH, Lee WY, Chiu I, Hwang SM, Lin WW, et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 2008;29:3547–56. doi:10.1016/j.biomaterials.2008.05.009. | eng |
dcterms.references | Mosammaparast N, Kim H, Laurent B, Zhao Y, Lim HJ, Majid MC, et al. The histone demethylase LSD1/KDM1A promotes the DNA damage response. J Cell Biol 2013;203:457–70. doi:10.1083/jcb.201302092. | eng |
dcterms.references | Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, et al. Reversal of Histone Lysine Trimethylation by the JMJD2 Family of Histone Demethylases. Cell 2006;125:467–81. doi:10.1016/j.cell.2006.03.028. | eng |
dcterms.references | Hamada S, Kim TD, Suzuki T, Itoh Y, Tsumoto H, Nakagawa H, et al. Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji Cdomain-containing histone lysine demethylase inhibitors. Bioorganic Med Chem Lett 2009;19:2852–5. doi:10.1016/j.bmcl.2009.03.098. | eng |
dcterms.references | Rose NR, Woon ECY, Kingham GL, King ONF, Mecinović J, Clifton IJ, et al. Selective Inhibitors of the JMJD2 Histone Demethylases: Combined Nondenaturing Mass Spectrometric Screening and Crystallographic Approaches. J Med Chem 2010;53:1810–8. doi:10.1021/jm901680b. | eng |
dcterms.references | Rose NR, Ng SS, Mecinović J, Liénard BMR, Bello SH, Sun Z, et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem 2008;51:7053–6. doi:10.1021/jm800936s. | eng |
dcterms.references | Hamada S, Suzuki T, Mino K, Koseki K, Oehme F, Flamme I, et al. Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors. J Med Chem 2010;53:5629–38. doi:10.1021/jm1003655. | eng |