dc.contributor.advisor | Gutiérrez López, Gustavo F. | |
dc.contributor.advisor | Jiménez Junca, Carlos Alberto | |
dc.contributor.author | Cáez Ramírez, Gabriela Rabe | |
dc.date.accessioned | 2018-05-31T16:58:21Z | |
dc.date.available | 2018-05-31T16:58:21Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Aguilera, J., Lillford, P. (2008). Structure–Property Relationships in Foods. Food
Materials Science, 229-253 | |
dc.identifier.citation | Alam, M. S., Kaur, B., Gupta, K., Kumar, S. (2013). Studies on Refrigerated Storage of
Minimally Processed Papaya (Carica papaya L.). Agricultural Engineering International:
CIGR Journal, 15(4), 275-280Alam, M. S., Kaur, B., Gupta, K., Kumar, S. (2013). Studies on Refrigerated Storage of
Minimally Processed Papaya (Carica papaya L.). Agricultural Engineering International:
CIGR Journal, 15(4), 275-280 | |
dc.identifier.citation | Allain, C., Cloitre, M. (1991). Characterizing the lacunarity of random and
deterministic fractal sets. Physical. Review, A 44 (6), 3552–3558. | |
dc.identifier.citation | Aravind, G., Debjit, B., Duraivel, S., Harish, G. (2013). Traditional and medicinal uses
of Carica papaya. Journal of Medicinal Plants Studies, 1(1), 7–15. | |
dc.identifier.citation | Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., Ortiz-DeSolorzano,
C. (2010). 3D reconstruction of histological sections: Application to mammary
gland tissue. Microscopy. Research and Technique, 73, 1019–29. | |
dc.identifier.citation | Argañosa, A. C. S., Raposo, M. F. J., Teixeira, P. C., Morais, A. M. (2008). Effect of
cut-type on quality of minimally processed papaya. Journal of the Science of Food and
Agriculture, 88(12), 2050–2060. | |
dc.identifier.citation | Arrieta-Baez, D., Corona, M. A. G., Gómez-Patiño, M. B., Flores, M. de J. P., Ruiz, L.
A. M., Martinez, B. M. B. (2015). An Integrated Analysis of the Musa Paradisiaca Peel,
Using UHPLC-ESI, FT-IR and Confocal Microscopy Techniques. Annales of
Chromatography and Separation Technology, 1(1), 1005-1010 | |
dc.identifier.citation | Aryal, R., Jagadeeswaran, G., Zheng, Y., Yu, Q., Sunkar, R., Ming, R. (2014). Sex
specific expression and distribution of small RNAs in papaya. BMC Genomics, 15(1), 20. | |
dc.identifier.citation | Arzate-Vázquez, I., Chanona-Pérez, J. J., Calderón-Domínguez, G., Terres-Rojas, E.,
Garibay-Febles, V., Martínez-Rivas, A., Gutiérrez-López, G. F. (2012). Microstructural
characterization of chitosan and alginate films by microscopy techniques and texture image
analysis. Carbohydrate Polymers, 87 (1), 289–299. | |
dc.identifier.citation | Arzate-Vázquez, I., Chanona-Pérez, J. J., Perea-Flores, M. de J., Calderón-Domínguez,
G., Moreno-Armendáriz, M. A., Calvo, H., Godoy-Calderón, S., Quevedo, R., GutiérrezLópez,
G. (2011). Image processing applied to classification of avocado variety Hass
(Persea americana Mill.) during the ripening process. Food Bioprocess Technology, 4(7),
1307–1313. | |
dc.identifier.citation | Attali, D., Boissonnat, J.D., Edelsbrunner, H. (2009). Stability and Computation of the
Medial Axes. A State of the Art Report. En: Möller T, Hamann B Russell RD. Editors.
Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive
Data Exploration. Berlin: Springer-Verlag, 109-126. | |
dc.identifier.citation | Backes, A. R., Casanova, D., Bruno, O. M. (2012). Color texture analysis based on
fractal descriptors. Pattern Recognition, 45(5), 1984–1992. | |
dc.identifier.citation | Bansal, S., Aggarwal, D. (2011). Color Image Segmentation Using CIELab Color
Space Using Ant Colony Optimization. International Journal of Computer Applications,
1(7), 415–420. | |
dc.identifier.citation | Bapat, V. A., Trivedi, P. K., Ghosh, A., Sane, V. A., Ganapathi, T. R., Nath, P. (2010).
Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnology
Advances, 28(1), 94-107. | |
dc.identifier.citation | Bogantes-Arias, A., Mora-Newcomer, E. (2017). Influence of genotype and
temperature on carpellody of papaya. Agronomía Mesoamericana, 28(3), 577-590. | |
dc.identifier.citation | Butler, H. J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., ... Walsh, M. J.
(2016). Using Raman spectroscopy to characterize biological materials. Nature protocols.
11(4), 664-687. | |
dc.identifier.citation | Brummell, D. A., Dal Cin, V., Crisosto, C. H., Labavitch, J. M. (2004). Cell wall
metabolism during maturation, ripening and senescence of peach fruit. Journal of
Experimental Botany. 55, 2029–39 | |
dc.identifier.citation | Cáez-Ramirez, G. R., Téllez-Medina, D. I., Gutierrez-López, G. F. (2015). Multiscale
and Nanostructural Approach to Fruits Stability. In Food Nanoscience and
Nanotechnology. 267-281 | |
dc.identifier.citation | Camach Díaz, B. H.., Aparicio, A. J., Chanona-Pérez, J. J., Calderón-Domínguez, G.,
Alamilla-Beltrán, L., Hernández-Sánchez, H., Gutiérrez-López, G. F. (2010). | |
dc.identifier.citation | Morphological characterization of the growing front of Rhizopus oligosporus in solid
media. Journal of Food Engineering, 101(3), 309–317 | |
dc.identifier.citation | Cantre, D., Herremans, E., Verboven, P., Ampofo-Asiama, J., Nicolaï, B. (2014).
Characterization of the 3-D microstructure of mango (Mangifera indica L. cv. Carabao)
during ripening using X-ray computed microtomography. Innovative Food Science and
Emerging Technologies. 24, 28–39. | |
dc.identifier.citation | Carrington, C. M. S. (2011) A firm focus on tropical fruit ripening. In International
Symposium on Tropical Horticulture, 894. 17-32. | |
dc.identifier.citation | Carvalho, R.L.; Cabral, M.F.; Germano, T.A.; De Carvalho, W.M.; Brasil, I.M.; Gallão,
M.I.; Mourad, C.F.; Lopes, M.M.; De Miranda, M.R.A. (2016). Chitosan coating with
transcinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut
melon. Postharvest Biology and Technology, 113, 29-39. | |
dc.identifier.citation | Chassagne-Berces, S., Poirier, C., Devaux, M.-F., Fonseca, F., Lahaye, M., Pigorini, G.,
Girault, C., Marin, M., Guillon, F. (2009). Changes in texture, cellular structure and cell
wall composition in apple tissue as a result of freezing. Food Research International, 42,
788–797 | |
dc.identifier.citation | Chen, J. (2007). Surface texture of foods: Perception and characterization. Critical
reviews in food science and nutrition, 47(6), 583-598. | |
dc.identifier.citation | Chhabra, A. B., Meneveau, C., Jensen, R. V., Sreenivasan, K. R. (1989). Direct
determination of the f(α) singularity spectrum and its application to fully developed
turbulence. Physical Review, A 40, 5284–5294. | |
dc.identifier.citation | Chien, P.-J., Lin, H.-R., Su, M.-S. (2013). Effects of Edible Micronized Chitosan
Coating on Quality and Shelf Life of Sliced Papaya. Food and Nutrition Sciences, 04(09),
9–13. | |
dc.identifier.citation | Chirchir, H., Kivell, T. L., Ruff, C. B., Hublin, J. J., Carlson, K. J., Zipfel, B.,
Richmond, B. G. (2015). Recent origin of low trabecular bone density in modern humans.
Proceedings of the National Academy of Sciences of the United States of America, 112,
366–71. | |
dc.identifier.citation | Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D. W., Menesatti, P. (2011).
Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision. Food and Bioprocess Technology, 4(5), 673–
692. | |
dc.identifier.citation | D’Andrea, L., Amenós, M., Rodríguez-Concepción, M. (2014). Confocal laser scanning
microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of
tomato fruit. Methods in Molecular Biology, 1153, 227–32. | |
dc.identifier.citation | do Prado, S. B., Melfi, P. R., Castro-Alves, V. C., Broetto, S. G., Araújo, E. S., do
Nascimento, J. R., Fabi, J. P. (2016). Physiological Degradation of Pectin in Papaya Cell
Walls: Release of Long Chains Galacturonans Derived from Insoluble Fractions during
Postharvest Fruit Ripening. Frontiers in plant science, 7, 1120. | |
dc.identifier.citation | Doube, M., Kłosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R.
P., Jackson, J. S., Schmid, B., Hutchinson, J. R., Shefelbine, S. J. (2010). BoneJ: Free and
extensible bone image analysis in ImageJ. Bone, 47, 1076–9. | |
dc.identifier.citation | Drzewiecki, W., Wawrzaszek, A., Aleksandrowicz, S., Krupinski, M. (2012). Initial
evaluation of the applicability of multifractal measures as global content-based image
descriptors. In Proceedings of ESA-EUSC-JRC 8th Conference on Image Information
Mining, 90-93. | |
dc.identifier.citation | Du, C. J., Sun, D. W. (2006). Learning techniques used in computer vision for food
quality evaluation: a review. Journal of Food Engineering, 72(1), 39-55. | |
dc.identifier.citation | Du, H., Li, L., Bennett, D., Guo, Y., Key, T. J., Bian, Z., ... Chen, J. (2016). Fresh fruit
consumption and major cardiovascular disease in China. New England Journal of
Medicine, 374(14), 1332-1343. | |
dc.identifier.citation | Egea, I., Bian, W., Barsan, C., Jauneau, A., Pech, J. C., Latché, A., Li, Z., Chervin, C.
(2011). Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy
analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on
intact live tissue. Annals of Botany, 108, 291–7. | |
dc.identifier.citation | Ergun, M., Huber, D. J., Jeong, J., Bartz, J. A. (2006). Extended shelf life and quality of
fresh-cut papaya derived from ripe fruit treated with the ethylene antagonist 1-
methylcyclopropene. Journal of the American Society for Horticultural Science, 131(1),
97-103. | |
dc.identifier.citation | Ergun, M., Karakurt, Y., Huber, D. J. (2011). Cell wall modification in 1-
methylcyclopropene-treated post-climacteric fresh-cut and intact papaya fruit. Plant Growth
Regulation, 65(3), 485-494. | |
dc.identifier.citation | Fabi, J. P., Broetto, S. G., da Silva, S. L. G. L., Zhong, S., Lajolo, F. M., do
Nascimento, J. R. O. (2014). Analysis of papaya cell wall-related genes during fruit
ripening indicates a central role of polygalacturonases during pulp softening. PloS One,
9(8), e105685 | |
dc.identifier.citation | FAOSTAT. (2017). Production index. Retrieved 11/12/2017, from
http://www.fao.org/faostat/en/#data/QC | |
dc.identifier.citation | Farrera-Rebollo, R. R., Salgado-Cruz, M. d. l. P., Chanona-Pérez, J., Gutiérrez-López,
G. F., Alamilla-Beltrán, L., Calderón-Domínguez, G. (2011). Evaluation of Image Analysis
Tools for Characterization of Sweet Bread Crumb Structure. Food and Bioprocess
Technology, 1-11. | |
dc.identifier.citation | FDA. (2009). 21 CFR 101.13 Additional Requirements for Nutrient Content Claims.
Silver Spring, MD, USA. | |
dc.identifier.citation | Florindo, J. B., Landini, G., Bruno, O. M. (2015). Texture descriptors by a fractal
analysis of three-dimensional local coarseness. Digital Signal Processing, 42, 70–79. | |
dc.identifier.citation | García-Armenta, E., Téllez-Medina, D. I., Alamilla-Beltrán, L., Arana-Errasquín, R.,
Hernández-Sánchez, H., Gutiérrez-López, G. F. (2014). Multifractal breakage patterns of
thick maltodextrin agglomerates. Powder Technology, 266, 440–446. | |
dc.identifier.citation | Gil, A. I., Miranda, D. (2005). Morfología de la flor y de la semilla de papaya (Carica
papaya L.): variedad Maradol e híbrido Tainung-1. Agronomía Colombiana, 23(2), 217-
222 | |
dc.identifier.citation | Gil, M. I., Aguayo, E., Kader, A. A. (2006). Quality changes and nutrient retention in
fresh-cut versus whole fruits during storage. Journal of Agricultural and Food Chemistry,
54(12), 4284-4296. | |
dc.identifier.citation | Gneiting, T., Ševčíková, H., Percival, D. B. (2012). Estimators of fractal dimension:
Assessing the roughness of time series and spatial data. Statistical Science, 27(2), 247-277. | |
dc.identifier.citation | Gonzalez, M. E., Jernstedt, J. A., Slaughter, D. C., Barrett, D. M. (2010). Microscopic
quantification of cell integrity in raw and processed onion parenchyma cells. Journal of
food science, 75(7), 402-408. | |
dc.identifier.citation | Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., Shraiman, B. I. (1986).
Fractal measures and their singularities: The characterization of strange sets. Physics
Review, A 33, 1141–1151. | |
dc.identifier.citation | Hamann, T. (2012). Plant cell wall integrity maintenance as an essential component of
biotic stress response mechanisms. Frontiers in Plant Science, 3, 77. | |
dc.identifier.citation | Herremans, E., Verboven, P., Bongaers, E., Estrade, P., Verlinden, B. E., Wevers, M.,
Hertog, M. L. A. T. M., Nicolai, B. M. (2013). Characterisation of “Braeburn” browning
disorder by means of X-ray micro-CT. Postharvest Biology and Technology, 75, 114–124. | |
dc.identifier.citation | Hiramoto, K., Imao, M., Sato, E. F., Inoue, M., Mori, A. (2008). Effect of fermented
papaya preparation on dermal and intestinal mucosal immunity and allergic inflammations
Journal of the Science of Food and Agriculture, 88(10), 1860-1860. | |
dc.identifier.citation | Iniestra-González, J.J., Lino-López, G.J., Paull, R.E., de la Rosa, A.P.B., MancillaMargalli,
N.A., Sañudo-Barajas, J.A., Ibarra-Junquera, V., Chen, N.J., Hernández-Velasco,
M.Á., Osuna-Castro, J.A., (2013). Papaya endoxylanase biochemical characterization and
isoforms expressed during fruit ripening. Postharvest Biology and Technology, 81, 13–22. | |
dc.identifier.citation | Isaeva, V. (2012). Self-organization in biological systems. Biology Bulletin, 39(2), 110-
118. | |
dc.identifier.citation | Jackman, P., Sun, D. W., (2013). Recent advances in image processing using image
texture features for food quality assessment. Trends in Food Science and Technology, 29,
35–43. | |
dc.identifier.citation | Jayathunge, K. G. L. R., Gunawardhana, D. K. S. N., Illeperuma, D. C. K., Chandrajith,
U. G., Thilakarathne, B. M. K. S., Fernando, M. D., Palipane, K. B. (2014). Physicochemical
and sensory quality of fresh cut papaya (Carica papaya) packaged in microperforated
polyvinyl chloride containers. Journal of Food Science and Technology, 51(12),
3918–25. | |
dc.identifier.citation | Jiang, Y., Li, C., Takeda, F. (2016). Nondestructive detection and quantification of
blueberry bruising using near-infrared (NIR) hyperspectral reflectance imaging. Scientific
reports, 6, 35679. | |
dc.identifier.citation | Jiménez, V. M., Mora-Newcomer, E., Gutiérrez-Soto, M. V. (2014). Biology of the
Papaya Plant, in: Ming, R., Moore, P.H. (Eds.), Genetics and Genomics of Papaya.
Springer New York, New York, pp. 17–33. | |
dc.identifier.citation | Karperien A. (1999-2013). FracLac for ImageJ. Retrieved from
http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm. | |
dc.identifier.citation | Karperien, A., Ahammer, H., Jelinek, H. F. (2013). Quantitating the subtleties of
microglial morphology with fractal analysis. Frontiers in Cellular Neuroscience, 7, 3. | |
dc.identifier.citation | Lara, I., Belge, B., Goulao, L. F., (2014). The fruit cuticle as a modulator of postharvest
quality. Postharvest Biology and Technology, 87, 103–112. | |
dc.identifier.citation | Lee, K. J. D., Marcus, S. E., Knox, J. P. (2011). Cell Wall Biology: Perspectives from
Cell Wall Imaging. Molecular Plant, 4(2), 212-219. | |
dc.identifier.citation | Lemmens, L., Van Buggenhout, S., Van Loey, A. M., Hendrickx, M. E. (2010). Particle
size reduction leading to cell wall rupture is more important for the β-carotene
bioaccessibility of raw compared to thermally processed carrots. Journal of Agricultural
and Food Chemistry, 58, 12769–76. | |
dc.identifier.citation | Li, J., Du, Q., Sun, C. (2009). An improved box-counting method for image fractal
dimension estimation. Pattern Recognition, 42(11), 2460–2469. | |
dc.identifier.citation | Li, L., Chang, L., Ke, S., Huang, D. (2012). Multifractal analysis and lacunarity
analysis: A promising method for the automated assessment of muskmelon (Cucumis melo
L.) epidermis netting. Computers and Electronics in Agriculture, 88(0), 72-84. | |
dc.identifier.citation | Li, X., Xu, C., Korban, S.S., Chen, K. (2010). Regulatory Mechanisms of Textural
Changes in Ripening Fruits. CRC. Critical reviews in plant sciences | |
dc.identifier.citation | Li, Z. Y., Wang, Y., Shen, W. T., Zhou, P. (2012). Content determination of benzyl
glucosinolate and anti-cancer activity of its hydrolysis product in Carica papaya L. Asian
Pacific Journal of Tropical Medicine, 5(3), 231–3. | |
dc.identifier.citation | Li, Z., Miao, F., Andrews, J. (2017). Mechanical Models of Compression and Impact on
Fresh Fruits. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1296-1312 | |
dc.identifier.citation | Lopes, R., Betrouni, N. (2009). Fractal and multifractal analysis: a review. Medical
Image Analysis, 13, 634–49. | |
dc.identifier.citation | Lorente, D., Aleixos, N., Gomez-Sanchis, J., Cubero, S., Garcia-Navarrete, O. L.,
Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and
vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142 | |
dc.identifier.citation | Lu H., Zheng, H., Hu Y., Lou, H., Kong, X. (2011). Bruise detection on red bayberry
(Myrica rubra Sieb. and Zucc.) using fractal analysis and support vector machine. Journal
of Food Engineering, 104, 149–153 | |
dc.identifier.citation | Ma, L., Zhang, M., Bhandari, B., Gao, Z., 2017. Recent developments in novel shelf
life extension technologies of fresh-cut fruits and vegetables. Trends in Food Science and
Technology. 64, 23–38. | |
dc.identifier.citation | Macek, W. M. (2012). Multifractal Turbulence in the Heliosphere, Exploring the Solar
Wind, Dr. Marian Lazar, in: InTech, 143–169. | |
dc.identifier.citation | Martins, D.R., de Resende, E.D. (2013). Quality of Golden papaya stored under
controlled atmosphere conditions. Food Science and Technology. International, 19, 473-
481. | |
dc.identifier.citation | Mattarozzi, M., Manfredi, E., Lorenzi, A., Smerieri, A., Di Blasio, A., Macaluso, G., ...
Galli, C. (2016). Comparison of Environmental Scanning Electron Microscopy in Low
Vacuum or wet mode for the investigation of cell biomaterial interactions. Acta Bio Medica
Atenei Parmensis, 87(1), 16-21. | |
dc.identifier.citation | Mandelbrot, B. B., Blumen, A. (1989). Fractal Geometry: What is it, and What Does it
do?. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
423(1864), 3-16. | |
dc.identifier.citation | Manrique, G. D., Lajolo, F. M. (2004). Cell-wall polysaccharide modifications during
postharvest ripening of papaya fruit (Carica papaya). Postharvest Biology and Technology,
33, 11–26. | |
dc.identifier.citation | Manzocco, L., Rumignani, A., Lagazio, C. (2012). Use of Images in Shelf Life
Assessment of Fruit Salad. Journal of Food Science, 77(7), S258-S262. | |
dc.identifier.citation | Marchettini, N., Pulselli, R. M., Rossi, F., Tiezzi, E. (2008). Entropy. In Encyclopedia
of Ecology, 1297-1305. | |
dc.identifier.citation | Mebatsion, H. K., Verboven, P., Melese Endalew, A., Billen, J., Ho, Q. T., Nicolaï, B.
M. (2009). A novel method for 3-D microstructure modeling of pome fruit tissue using
synchrotron radiation tomography images. Journal of Food Engineering, 93, 141–148. | |
dc.identifier.citation | Mendoza, F., Valous, N., Delgado, A., Sun, D. W. (2011). Multifractal Characterization
of Apple Pore and Ham Fat-Connective Tissue Size Distributions Using Image Analysis. In
Food Engineering Interfaces, 599-616. | |
dc.identifier.citation | Mendoza, F., Verboven, P., Ho, Q. T., Kerckhofs, G., Wevers, M., Nicolaï, B. (2010).
Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. Journal
of Food Engineering, 99(2), 206–215. | |
dc.identifier.citation | Mendoza, F., Verboven, P., Mebatsion, H. K., Kerckhofs, G., Wevers, M., Nicolaï, B.
(2007). Three-dimensional pore space quantification of apple tissue using X-ray computed
microtomography. Planta, 226, 559–70. | |
dc.identifier.citation | Mendoza, F., Verboven, P., Tri Ho, Q., Kerckhofs, G., Wevers, M, Nicolaï, B. (2010).
Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. Journal
of Food Engineering, 99(2), 206-215. | |
dc.identifier.citation | Meraz-Torres, L.S., Quintanilla-Carvajal, M.X., Hernández-Sánchez, H., TéllezMedina,
D.I., Alamilla-Beltrán, L., Gutiérrez-López, G.F. (2011). Assessment of the
kinetics of contact angle during the wetting of maltodextrin agglomerates. Revista
mexicana de ingeniería química, 10, 273–279. | |
dc.identifier.citation | Mery, D., Chanona-Pérez, J. J., Soto, A., Aguilera, J. M., Cipriano, A., Veléz-Rivera,
N., Arzate, L., Gutiérrez-López, G. F. (2010). Quality classification of corn tortillas using
computer vision. Journal of Food Engineering, 101(4), 357-364. | |
dc.identifier.citation | Meyers, M. A., Chen, P. Y., Lopez, M. I., Seki, Y., Lin, A. Y. (2011). Biological
materials: a materials science approach. Journal of the mechanical behaviour of biomedical
materials, 4(5), 626-657. | |
dc.identifier.citation | Mier-Giraldo, H., Díaz-Barrera, L. E., Delgado-Murcia, L. G., Valero-Valdivieso, M.
F., Cáez-Ramírez, G. (2017). Cytotoxic and immunomodulatory potential activity of
Physalis peruviana fruit extracts on cervical cancer (HeLa) and Fibroblast (L929) Cells.
Journal of Evidence-Based Complementary and Alternative Medicine, 2156587217718751. | |
dc.identifier.citation | Mishra, B. B., Gautam, S., Chander, R., Sharma, A. (2015). Characterization of
nutritional, organoleptic and functional properties of intermediate moisture shelf stable
ready-to-eat Carica papaya cubes. Food Bioscience, 10, 69–79. | |
dc.identifier.citation | Montero-Calderon, M., Rojas-Grau, M. A., Martin-Belloso, O. (2008). Effect of
packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus).
Postharvest Biology and Technology, 50(2-3), 182-189. | |
dc.identifier.citation | Morais, A. M. M. B., Argañosa, A. C. S. J. (2010). Quality during storage of fresh-cut
papaya (Carica papaya L.) in various shapes. Retrieved from
http://repositorio.ucp.pt//handle/10400.14/3313 | |
dc.identifier.citation | Nagata, M., Tallada, J. G. (2008). 11 - Quality Evaluation of Strawberries. In S. DaWen
(Ed.), Computer Vision Technology for Food Quality Evaluation (pp. 265-287).
Amsterdam: Academic Press | |
dc.identifier.citation | Ng, J.K.T., Schröder, R., Brummell, D.A., Sutherland, P.W., Hallett, I.C., Smith, B.G.,
Melton, L.D., Johnston, J.W. (2015). Lower cell wall pectin solubilisation and galactose
loss during early fruit development in apple (Malus x domestica) cultivar “Scifresh” are
associated with slower softening rate. Journal of Plant Physiology, 176, 129–37. | |
dc.identifier.citation | Nicola, S., Tibaldi, G., Fontana, E. (2009). Fresh-cut Produce Quality: Implications for
a Systems Approach. In Postharvest Handling, 247-282 | |
dc.identifier.citation | Odriozola-Serrano, I., Soliva-Fortuny, R., Martin-Belloso, O. (2008). Antioxidant
properties and shelf-life extension of fresh-cut tomatoes stored at different temperatures.
Journal of the Science of Food and Agriculture, 88(15), 2606-2614. | |
dc.identifier.citation | Oms-Oliu, G., Rojas-Grau, M. A., Gonzalez, L. A., Varela, P., Soliva-Fortuny, R.,
Hernando, M. I., Pérez-Munuera, I., Fiszman, S., Martin-Belloso, O. (2010). Recent
approaches using chemical treatments to preserve quality of fresh-cut fruit: A review.
Postharvest Biology and Technology, 57(3), 139-148. | |
dc.identifier.citation | Palzer, S., Dubois, C., Gianfrancesco, A. (2012). Generation of product structures
during drying of food products. Drying Technology, 30(1), 97-105. | |
dc.identifier.citation | Pathare, P. B., Opara, U. L., Al-Said, F. A. J. (2012). Colour Measurement and
Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1),
36–60. | |
dc.identifier.citation | Payasi, A., Mishra, N. N., Chaves, A. L. S., Singh, R. (2009). Biochemistry of fruit
softening: an overview. Physiology and molecular biology of plants, 103-113. | |
dc.identifier.citation | Prasanna, V., Prabha, T. N., Tharanathan, R. N. (2007). Fruit ripening phenomena–an
overview. Critical reviews in food science and nutrition, 47(1), 1-19 | |
dc.identifier.citation | Perea-Flores, M. J., Chanona-Pérez, J. J., Garibay-Febles, V., Calderón-Dominguez, G.,
Terrés-Rojas, E., Mendoza-Pérez, J. A., Herrera-Bucio, R. (2011). Microscopy techniques
and image analysis for evaluation of some chemical and physical properties and
morphological features for seeds of the castor oil plant (Ricinus communis). Industrial
Crops and Products, 34(1), 1057-1065. | |
dc.identifier.citation | Phothiset, S., Charoenrein, S. (2014). Effects of freezing and thawing on texture,
microstructure and cell wall composition changes in papaya tissues. Journal of the Science
of Food and Agriculture, 94, 189–96. | |
dc.identifier.citation | Pieczywek, P. M., Zdunek, A. (2012). Automatic classification of cells and intercellular
spaces of apple tissue. Computers and Electronics in Agriculture. 81, 72–78. | |
dc.identifier.citation | Public Health Service, U. (2009). FDA, 2009. Food code, In: services, U.S.D.o.h.a.h.
Qin, J., Chao, K., and Kim, M. S. (2012). Nondestructive evaluation of internal
maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biology and
Technology, 71, 21-31. | |
dc.identifier.citation | Quevedo, R., Díaz, O., Caqueo, A., Ronceros, B., Aguilera, J. M. (2009). Quantification
of enzymatic browning kinetics in pear slices using non-homogenous L* color information
from digital images. LWT - Food Science and Technology, 42(8), 1367–1373. | |
dc.identifier.citation | Quevedo, R., Jaramillo, M., Diaz, O., Pedreschi, F., Aguilera, J. M. (2009).
Quantification of enzymatic browning in apple slices applying the fractal texture Fourier
image. Journal of Food Engineering, 95(2), 285-290. | |
dc.identifier.citation | Quevedo, R., Mendoza, F., Aguilera, J. M., Chanona, J., Gutierrez-Lopez, G. (2008).
Determination of senescent spotting in banana (Musa cavendish) using fractal texture
Fourier image. Journal of Food Engineering, 84(4), 509-515. | |
dc.identifier.citation | Quevedo, R., Ronceros, B., Garcia, K., Lopéz, P., Pedreschi, F. (2011). Enzymatic
browning in sliced and puréed avocado: A fractal kinetic study. Journal of Food
Engineering, 105(2), 210-215. | |
dc.identifier.citation | Quevedo, R., Valencia, E., Bastías, J., Cárdenas, S. (2014). Description of the
Enzymatic Browning in Avocado Slice Using GLCM Image Texture. Image and Video
Technology, Vol. 8334, 93–101. | |
dc.identifier.citation | Quintanilla-Carvajal, M. X., Camacho-Díaz, B. H., Meraz-Torres, L. S., ChanonaPérez,
J. J., Alamilla-Beltrán, L., Jiménez-Aparicio, A., Gutiérrez-López, G. F. (2010).
Nanoencapsulation: A new trend in food engineering processing. Food Engineering
Reviews, 2(1), 39-50. | |
dc.identifier.citation | Rasband, W. S. (2015). ImageJ. National Institutes of Health, Bethesda, Maryland,
USA, Http://imagej.nih.gov/ij/, (//imagej.nih.gov/ij/). | |
dc.identifier.citation | Rodríguez Cabello, J., Díaz Hernández, Y., Pérez González, A., Natali Cruz, Z.,
Rodríguez Hernández, P. (2014). Evaluación de la calidad y el rendimiento en papaya
silvestre (Carica papaya L.) de Cuba. Cultivos Tropicales, 35, 36-44. | |
dc.identifier.citation | Rodríguez-Pulido, F. J., Gordillo, B., González-Miret, M. L., Heredia, F. J. (2013).
Analysis of food appearance properties by computer vision applying ellipsoids to colour
data. Computers and electronics in agriculture, 99, 108-115. | |
dc.identifier.citation | Saetzler, K., Sonnenschein, C., Soto, A. M. (2011). Systems biology beyond networks:
Generating order from disorder through self-organization. Seminars in Cancer Biology,
21(3), 165-174. | |
dc.identifier.citation | Saini, R. K., Nile, S. H., Park, S. W. (2015). Carotenoids from fruits and vegetables:
chemistry, analysis, occurrence, bioavailability and biological activities. Food Research
International, 76, 735-750. | |
dc.identifier.citation | Saldaña, E., Siche, R., Castro, W., Huamán, R., Quevedo, R. (2014). Measurement
parameter of color on yacon (Smallanthus sonchifolius) slices using a computer vision
system. LWT - Food Science and Technology, 59(2), 1220–1226. | |
dc.identifier.citation | Sánchez-Segura, L., Téllez-Medina, D.I., Evangelista-Lozano, S., García-Armenta, E.,
Alamilla-Beltrán, L., Hernández-Sánchez, H., Jiménez-Aparicio, A.R., Gutiérrez-López,
G.F. (2015). Morpho-structural description of epidermal tissues related to pungency of
Capsicum species. Journal of Food Engineering. 152, 95–104. | |
dc.identifier.citation | Sankur, B. (2004). Survey over image thresholding techniques and quantitative
performance evaluation. Journal of Electronic Imaging, 13(1), 146-168. | |
dc.identifier.citation | Sansiribhan, S., Devahastin, S., Soponronnarit, S. (2010). Quantitative Evaluation of
Microstructural Changes and their Relations with Some Physical Characteristics of Food
during Drying. Journal of Food Science, 75(7), E453-E461. | |
dc.identifier.citation | Sansiribhan, S., Devahastin, S., Soponronnarit, S. (2012). Generalized microstructural
change and structure-quality indicators of a food product undergoing different drying
methods and conditions. Journal of Food Engineering, 109(1), 148-154. | |
dc.identifier.citation | Santamaría Basulto, F., Sauri Duch, E., Espadas y Gil, F., Díaz Plaza, R., Larqué
Saavedra, A., Santamaría, J. M. (2009). Postharvest ripening and maturity indices for
Maradol papaya. Interciencia, 34(8), 583-588. | |
dc.identifier.citation | Santamaría-Basulto, F., Díaz-Plaza, R., Sauri-Duch, E., Espadas-y-Gil, F., SantamaríaFernández,
J. M., Larqué-Saavedra, A. (2009 b). Quality characteristics in maradol papaya
fruits at the comsumption ripeness stage. Agricultura técnica en México, 35(3), 347-353. | |
dc.identifier.citation | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein,
V., Eliceiri, K., Tomancak, P., Cardona, A. (2012). Fiji: an open-source platform for
biological-image analysis. Nature Methods, 9(7), 676–82. | |
dc.identifier.citation | Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W. (2015). The ImageJ
ecosystem: An open platform for biomedical image analysis. Molecular Reproduction and
Development, 82, 518–29 | |
dc.identifier.citation | Schweiggert, R. M., Kopec, R. E., Villalobos-Gutierrez, M. G., Högel, J., Quesada, S.,
Esquivel, P., Schwartz, S. J., Carle, R. (2014). Carotenoids are more bioavailable from
papaya than from tomato and carrot in humans: a randomised cross-over study. The British
Journal of Nutrition, 111(3), 490–8 | |
dc.identifier.citation | Schweiggert, R. M., Steingass, C. B., Heller, A., Esquivel, P., Carle, R. (2011).
Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya
(Carica papaya L.). Planta, 234, 1031–44 | |
dc.identifier.citation | Schweiggert, R. M., Steingass, C. B., Mora, E., Esquivel, P., Carle, R. (2011b).
Carotenogenesis and physico-chemical characteristics during maturation of red fleshed
papaya fruit (Carica papaya L.). Food Research International, 44(5), 1373-1380. | |
dc.identifier.citation | Stabentheiner, E., Zankel, A., Pölt, P. (2010). Environmental scanning electron
microscopy (ESEM)—a versatile tool in studying plants. Protoplasma, 246(1-4), 89-99.
Sun, D. W. (2007). Computer vision technology for food quality evaluation: Academic
Press. | |
dc.identifier.citation | Thyagharajan, K. K., Minu, R. I. (2013). Prevalent Color Extraction and Indexing.
International Journal of Engineering and Technology, 5(6), 4841–4849. | |
dc.identifier.citation | Tschirner, N., Schenderlein, M., Brose, K., Schlodder, E., Mroginski, M. A., Thomsen,
C., Hildebrandt, P. (2009). Resonance Raman spectra of β-carotene in solution and in
photosystems revisited: an experimental and theoretical study. Physical chemistry chemical
physics, 11(48), 11471-11478. | |
dc.identifier.citation | Tirkey, B., Pal, U. S., Bal, L. M., Sahoo, N. R., Bakhara, C. K., Panda, M. K. (2014).
Evaluation of physico-chemical changes of fresh-cut unripe papaya during storage. Food
Packaging and Shelf Life, 1(2), 190-197. | |
dc.identifier.citation | Toivonen, P. M. A., Brummel, D. A. (2008). Biochemical bases of appearance and
texture changes in fresh-cut fruit and vegetables. Postharvest Biology and technology, 1-14.
Thumdee, S., Manenoi, A., Chen, N. J., Paull, R. E. (2010). Papaya fruit softening: role
of hydrolases. Tropical Plant Biology, 3(2), 98-109 | |
dc.identifier.citation | US Food and Drug Administration. Food code 2013; US Health and Human Services:
College Park, MD, 2013; 768 pp | |
dc.identifier.citation | Utrilla-Coello, R. G., Bello-Pérez, L. A., Vernon-Carter, E. J., Rodriguez, E., AlvarezRamirez,
J. (2013). Microstructure of retrograded starch: Quantification from lacunarity
analysis of SEM micrographs. Journal of Food Engineering, 116(4), 775–781. | |
dc.identifier.citation | Van der Sman, R. G. M. (2012). Soft matter approaches to food structuring. Advances
in colloid and interface science, 176, 18-30. | |
dc.identifier.citation | Valous, N. A., Mendoza, F., Sun, D. W., Allen, P. (2009). Texture appearance
characterization of pre-sliced pork ham images using fractal metrics: Fourier analysis
dimension and lacunarity. Food Research International, 42, 353–362. | |
dc.identifier.citation | Valous, N. A., Sun, D. W., Allen, P., Mendoza, F. (2010). The use of lacunarity for
visual texture characterization of pre-sliced cooked pork ham surface intensities. Food
Research International, 43, 387–395. | |
dc.identifier.citation | Vij, T., Prashar, Y. (2015). A review on medicinal properties of Carica papaya Linn.
Asian Pacific Journal of Tropical Disease, 5(1), 1–6. | |
dc.identifier.citation | Voss, R.F. 1991. Random fractals: characterization and measurement. In Scaling
Phenomena in Disordered Systems,1-11. | |
dc.identifier.citation | Wang, S., Zhang, Y., Ji, G., Yang, J., Wu, J., Wei, L. (2015). Fruit Classification by
Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic
ABC and Biogeography-Based Optimization. Entropy 17, 5711–5728. | |
dc.identifier.citation | Welti-Chanes, J., Chanona-Pérez, J., Ma. Eugenia, J. F., Gustavo, G. L., Verónica, S.
V., Claudia, S. V. (2007). Fractal Theory Applied to Food Science Encyclopedia of
Agricultural, Food, and Biological Engineering, 1-13. | |
dc.identifier.citation | Wu, D., Sun, D. W. (2013). Colour measurements by computer vision for food quality
control – A review. Trends in Food Science and Technology, 29(1), 5-20. | |
dc.identifier.citation | Yuan, H., Zhang, J., Nageswaran, D., Li, L. (2015). Carotenoid metabolism and
regulation in horticultural crops. Horticulture Research, 2, 15036. | |
dc.identifier.citation | Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C., (2014). Principles,
developments and applications of computer vision for external quality inspection of fruits
and vegetables: A review. Food Research International, 62, 326–343. | |
dc.identifier.citation | Zhao, T., Wang, D., Qian, D. (2009). Machine Vision Based Image Analysis for the
Estimation of Pear External Quality. Paper presented at the Proceedings of the 2009 Second
International Conference on Intelligent Computation Technology and Automation,
Washington, D.C. | |
dc.identifier.citation | Zheng, C., Sun, D. W., Zheng, L. (2006). Recent developments and applications of
image features for food quality evaluation and inspection - a review. Trends in Food
Science and Technology, 17(12), 642-655. | |
dc.identifier.citation | Zheng, H., Lu, H. (2012). A least-squares support vector machine (LS-SVM) based on
fractal analysis and CIELab parameters for the detection of browning degree on mango
(Mangifera indica L.). Computers and Electronics in Agriculture, c 83, 47–51. | |
dc.identifier.uri | http://hdl.handle.net/10818/33084 | |
dc.description | 191 Páginas | es_CO |
dc.description.abstract | La papaya, fruto de alto consumo en el mundo, con propiedades saludables y componentes funcionales, requiere estrategias apropiadas para evaluar, de manera cuantitativa y no destructiva, los cambios morfoestructurales con efectos apreciables a simple vista que determinan la perdida de frescura de papaya precortada. Este proyecto se centró en describir el fenómeno de senescencia de papaya fresca precortada debida al estrés abiótico generado por exposición al ambiente, simulando condiciones normales y extremas en una barra de ensaladas, con un periodo máximo de espera de cuatro horas. La descripción del fenómeno de senescencia se logró a partir de la relación entre los cambios en las propiedades físicas, ópticas y mecánicas con los cambios estructurales de la pared celular y lámina media evaluados mediante el análisis digital de imágenes con enfoque multiescalar. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Papaya -- Propiedades fisicoquímicas | es_CO |
dc.subject | Textura de los alimentos | es_CO |
dc.subject | Análisis espectral | es_CO |
dc.subject | Descomposición de alimentos | es_CO |
dc.title | Análisis de imágenes y fractal como estrategia para la descripción del fenómeno de senescencia de papaya fresca precortada (Carica papaya L.) | es_CO |
dc.type | doctoralThesis | es_CO |
dc.publisher.program | Doctorado en Biociencias | es_CO |
dc.publisher.department | Facultad de Ingeniería | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Doctor en Biociencias | es_CO |