dc.contributor.advisor | Torres Ramos, Andres Felipe | |
dc.contributor.advisor | Reyes Rubiano, Lorena Silvana | |
dc.contributor.author | Gutiérrez Güiza, Jorge Alexander | |
dc.date.accessioned | 2018-05-31T14:35:13Z | |
dc.date.available | 2018-05-31T14:35:13Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Agencia Nacional de Hidrocarburos. (2017). Estadísticas de Producción. Recuperado Julio 7, 2017,
de http://www.anh.gov.co/Operaciones-Regalias-y-Participaciones/Sistema-Integrado-deOperaciones/Paginas/Estadisticas-de-Produccion.aspx | |
dc.identifier.citation | Agencia Nacional de Hidrocarburos - Colombia. (2016). Shape de pozos 2015 Agencia Nacional de
Hidrocarburos - Colombia. Recuperado de
http://www.anh.gov.co/Paginas/inicio/defaultANH.aspx | |
dc.identifier.citation | Ahmadi, A., & Seddighi, A. H. (2013). A location-routing problem with disruption risk.
Transportation Research Part E: Logistics and Transportation Review, 53(1), 63–82 | |
dc.identifier.citation | Al-Mudhafar, W. J., Al-Jawad, M. S., & Al-Shamma, D. A. (2010). Using optimization techniques
for determining optimal locations of additional oil wells in South Rumaila oil field. Society of
Petroleum Engineers - International Oil and Gas Conference and Exhibition in China 2010,
IOGCEC, 1(SPE 130054), 159–178 | |
dc.identifier.citation | Alexander, B., & Sergey, S. (2014). A Metaheuristic Approach for the Problem of Motor Fuel
Distribution. Procedia Computer Science, 31(Itqm), 143–150. | |
dc.identifier.citation | Aliabadi, A., & Shamekhi, A. (2012). Recent Developments in Gas Flaring and Venting Reduction.
In SPE 152024. | |
dc.identifier.citation | Alumur, S., & Kara, B. Y. (2007). A new model for the hazardous waste location-routing problem.
Computers and Operations Research, 34(5), 1406–1423 | |
dc.identifier.citation | Ambrosino, D., Sciomachen, A., & Scutellà, M. G. (2009). A heuristic based on multi-exchange
techniques for a regional fleet assignment location-routing problem. Computers and
Operations Research, 36(2), 442–460. | |
dc.identifier.citation | Anghinolfi, D., Paolucci, M., & Tonelli, F. (2016). A Vehicle Routing Problem with Time
Windows Approach for Planning Service Operations in Gas Distribution Network of a
Metropolitan Area. IFAC-PapersOnLine, 49(12), 1365–1370. | |
dc.identifier.citation | Barrero, D., Pardo, A., Vargas, C. a., & Martínez, J. F. (2007). Colombian Sedimentary Basins:
Nomenclature, boundaries and Petroleum Geology, a New Proposal. Agencia Nacional de
Hidrocarburos - A.N.H.-. Agencia Nacional de Hidrocarburos. https://doi.org/ISBN: 978-958-
98237-0-5 | |
dc.identifier.citation | Barreto, S., Ferreira, C., Paixão, J., & Santos, B. S. (2007). Using clustering analysis in a
capacitated location-routing problem. European Journal of Operational Research, 179(3),
968–977. https://doi.org/10.1016/j.ejor.2005.06.074 | |
dc.identifier.citation | Biobaku, T., Lim, G., Cho, J., Parsaei, H., & Kim, S. (2015). Liquefied Natural Gas Ship Route
Planning: A Risk Analysis Approach. Procedia Manufacturing, 3, 1319–1326. | |
dc.identifier.citation | Blanquero, R., Carrizosa, E., Boglárka, G., & Nogales-gómez, A. (2016). p -facility Huff location
problem on networks. European Journal of Operational Research, 255(1), 34–42. | |
dc.identifier.citation | Bozorgi-Amiri, A., & Khorsi, M. (2016). A dynamic multi-objective location-routing model for
relief logistic planning under uncertainty on demand, travel time, and cost parameters.
International Journal of Advanced Manufacturing Technology, 85(5–8), 1633–1648. | |
dc.identifier.citation | Caballero, R., González, M., Guerrero, F. M., Molina, J., & Paralera, C. (2007). Solving a multiobjective location routing problem with a metaheuristic based on tabu search.
Application to a real case in Andalusia. European Journal of Operational Research, 177(3),
1751–1763. | |
dc.identifier.citation | Chbichib, A., Mellouli, R., & Chabchoub, H. (2012). Profitable Vehicle Routing Problem with
Multiple Trips: Modeling and Variable Neighborhood Descent Algorithm. American Journal
of Operational Research, 2(6), 104–119. | |
dc.identifier.citation | Coelho, V. N., Grasas, A., Ramalhinho, H., Coelho, I. M., Souza, M. J. F., & Cruz, R. C. (2016).
An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips
and docking constraints. European Journal of Operational Research, 250(2), 367–376. | |
dc.identifier.citation | Coutinho-Rodrigues, J., Tralhão, L., & Alçada-Almeida, L. (2012). Solving a location-routing
problem with a multiobjective approach: The design of urban evacuation plans. Journal of
Transport Geography, 22, 206–218. | |
dc.identifier.citation | de Camargo, R. S., de Miranda, G., & Løkketangen, A. (2013). A new formulation and an exact
approach for the many-to-many hub location-routing problem. Applied Mathematical
Modelling, 37(12–13), 7465–7480. | |
dc.identifier.citation | Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing
problem. European Journal of Operational Research, 241(2), 283–308. | |
dc.identifier.citation | Elvidge, C. D., Baugh, K. E., Tuttle, B. T., Howard, A. T., Pack, D. W., Milesi, C., & Erwin, E. H.
(2007). A twelve year record of national and global gas flaring volumes estimated using
satellite data. Recuperado de
http://siteresources.worldbank.org/INTGGFR/Resources/DMSP_flares_20070530_b-sm.pdf | |
dc.identifier.citation | Emam, E. A. (2015). Gas Flaring in Industry: an Overview. Petroleum & Coal, 57(5), 532–555. | |
dc.identifier.citation | Energy Information Administration. (2017). U.S. No 2 Diesel Retail Prices. Recuperado Julio 26,
2017, de
https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMD_EPD2D_PTE_NUS_D
PG&f=W | |
dc.identifier.citation | Escobar, J. W., Linfati, R., Baldoquin, M. G., & Toth, P. (2014). A Granular Variable Tabu
Neighborhood Search for the capacitated location-routing problem. Transportation Research
Part B: Methodological, 67, 344–356. | |
dc.identifier.citation | Fazel Zarandi, M. H., Hemmati, A., Davari, S., & Burhan Turksen, I. (2013). Capacitated locationrouting
problem with time windows under uncertainty. Knowledge-Based Systems, 37, 480–
489. | |
dc.identifier.citation | Fernandez Cuesta, E., Andersson, H., Fagerholt, K., & Laporte, G. (2017). Vessel routing with
pickups and deliveries: An application to the supply of offshore oil platforms. Computers and
Operations Research, 79(March 2016), 140–147. | |
dc.identifier.citation | Fiorot, H., Alvarenga, R. De, & Rosa, A. L. da S. (2016). Planning The Diesel Supply For Offshore
Platforms By A Mathematical Model Based On The Vehicle Routing Problem With
Replenishment. Transportation Research Procedia, 18(June), 11–18. | |
dc.identifier.citation | Gao, J., He, C., & You, F. (2017). Shale Gas Process and Supply Chain Optimization. In Advances
in Energy Systems Engineering (Vol. 1, pp. 21–46). | |
dc.identifier.citation | Gao, S., Wang, Y., Cheng, J., Inazumi, Y., & Tang, Z. (2016). Ant colony optimization with
clustering for solving the dynamic location routing problem. Applied Mathematics and Computation, 285, 149–173. | |
dc.identifier.citation | Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2013). Hybrid heuristic for the
inventory location-routing problem with deterministic demand. International Journal of
Production Economics, 146(1), 359–370. | |
dc.identifier.citation | Hanczar, P. (2012). A Fuel Distribution Problem – Application of New Multi-item Inventory
Routing Formulation. Procedia - Social and Behavioral Sciences, 54, 726–735. | |
dc.identifier.citation | Hashemi Doulabi, S. H., & Seifi, A. (2013). Lower and upper bounds for location-arc routing
problems with vehicle capacity constraints. European Journal of Operational Research,
224(1), 189–208. | |
dc.identifier.citation | He, Z., Khatu, G., Tenenbaum, E., Li, W., & Han, Z. (2016). Flared Gas Monetization with
Modular Gas-to-Liquid Units : Oilfield Conversion of Associated Gas into Petrol at SmallScales.
In Abu Dhabi International Petroleum Exhibition & Conference SPE-183510-MS. | |
dc.identifier.citation | Hernandez, F., Feillet, D., Giroudeau, R., & Naud, O. (2016). Branch-and-price algorithms for the
solution of the multi-trip vehicle routing problem with time windows. European Journal of
Operational Research, 249(2), 551–559. | |
dc.identifier.citation | Karaoglan, I., & Altiparmak, F. (2015). A memetic algorithm for the capacitated location-routing
problem with mixed backhauls. Computers and Operations Research, 55, 200–216. | |
dc.identifier.citation | Karaoglan, I., Altiparmak, F., Kara, I., & Dengiz, B. (2011). A branch and cut algorithm for the
location-routing problem with simultaneous pickup and delivery. European Journal of
Operational Research, 211(2), 318–332. | |
dc.identifier.citation | Karaoglan, I., Altiparmak, F., Kara, I., & Dengiz, B. (2012). The location-routing problem with
simultaneous pickup and delivery: Formulations and a heuristic approach. Omega, 40(4), 465–
477. | |
dc.identifier.citation | Koc, Ç. (2016). A unified-adaptive large neighborhood search metaheuristic for periodic locationrouting
problems. Transportation Research Part C: Emerging Technologies, 68, 265–284. | |
dc.identifier.citation | Kovacs, A. A., Parragh, S. N., & Hartl, R. F. (2015). The multi-objective generalized consistent
vehicle routing problem. European Journal of Operational Research, 247(2), 441–458. | |
dc.identifier.citation | Li, J., Chu, F., & Prins, C. (2009). Lower and upper bounds for a capacitated plant location problem
with multicommodity flow. Computers & Operations Research, 36, 3019-- 3030. | |
dc.identifier.citation | Li, Y., Hu, G., & Wright, M. M. (2015). An optimization model for sequential fast pyrolysis facility
location-allocation under renewable fuel standard. Energy, 93, 1165–1172. | |
dc.identifier.citation | Linfati, R., Escobar, J. W., & Gatica, G. (2014). A Metaheuristic Algorithm for the Location
Routing Problem with Heterogeneous Fleet. Ingeniería y Ciencia, 10(19), 55–76. | |
dc.identifier.citation | Lopes, R. B., Ferreira, C., Santos, B. S., & Barreto, S. (2013). A taxonomical analysis, current
methods and objectives on location-routing problems. International Transactions in
Operational Research, 20(6), 795–822. | |
dc.identifier.citation | Lopes, R. B., Plastria, F., Ferreira, C., & Santos, B. S. (2014). Location-arc routing problem:
Heuristic approaches and test instances. Computers and Operations Research, 43, 309–317. | |
dc.identifier.citation | López, E., Akhavani, R., Dieulle, L., Labadie, N., & Medaglia, A. L. (2016). On the combined
maintenance and routing optimization problem. Reliability Engineering and System Safety,
145, 199–214. | |
dc.identifier.citation | Marín, A., Nickel, S., Puerto, J., & Velten, S. (2009). A flexible model and efficient solution
strategies for discrete location problems. Discrete Applied Mathematics, 157(157), 1128–
1145. | |
dc.identifier.citation | Markov, I., Varone, S., & Bierlaire, M. (2016). Integrating a heterogeneous fixed fleet and a
flexible assignment of destination depots in the waste collection VRP with intermediate
facilities. Transportation Research Part B: Methodological, 84, 256–273. | |
dc.identifier.citation | Martínez, I. A., Molina, J., Ángel, F., Gómez, T., & Caballero, R. (2014). Solving a bi-objective
Transportation Location Routing Problem by metaheuristic algorithms. European Journal of
Operational Research, 234, 25–36. | |
dc.identifier.citation | Motherwell, J., & Weinbel, C. (2014). Facility siting and routing with a focus on sustainability. In
SPE International Conference on Health, Safety and Environment 2014: The Journey
Continues SPE 168534 Facility. Recuperado de
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84905860521&partnerID=40&md5=247a7320ef56ac02265bc4cb3261d9b7 | |
dc.identifier.citation | Mousavi, S. M., & Tavakkoli-Moghaddam, R. (2013). A hybrid simulated annealing algorithm for
location and routing scheduling problems with cross-docking in the supply chain. Journal of
Manufacturing Systems, 32(2), 335–347. | |
dc.identifier.citation | Ocampo, E. M. T., Castaño, A. H. D., & Zuluaga, A. H. E. (2016). Desempeño de las técnicas de
agrupamiento para resolver el problema de ruteo con múltiples depósitos. Tecno Lógicas,
19(36), 49–62. | |
dc.identifier.citation | Pérez, C. E. T., & Flores, J. L. M. (n.d.). Revisión y programación de modelos de optimización
como una plataforma en GAMS-CPLEX para problemas de ruteo de vehículos . | |
dc.identifier.citation | PFC Energy. (2007). Using Russia’s Associated Gas: Prepared for the Global Gas Flaring
Reduction Partnership and the World Bank. | |
dc.identifier.citation | Prodhon, C. (2011). A hybrid evolutionary algorithm for the periodic location-routing problem.
European Journal of Operational Research, 210(2), 204–212. | |
dc.identifier.citation | Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems.
European Journal of Operational Research, 238(1), 1–17. | |
dc.identifier.citation | Qian, J., & Eglese, R. (2016). Fuel emissions optimization in vehicle routing problems with timevarying
speeds. European Journal of Operational Research, 248(3), 840–848. | |
dc.identifier.citation | Rajović, V., Kiss, F., Maravić, N., & Bera, O. (2016). Environmental flows and life cycle
assessment of associated petroleum gas utilization via combined heat and power plants and
heat boilers at oil fields. Energy Conversion and Management, 118, 96–104 | |
dc.identifier.citation | Rakke, J. G., Stålhane, M., Moe, C. R., Christiansen, M., Andersson, H., Fagerholt, K., & Norstad,
I. (2011). A rolling horizon heuristic for creating a liquefied natural gas annual delivery
program. Transportation Research Part C: Emerging Technologies, 19(5), 896–911. | |
dc.identifier.citation | Ramírez, E. Á., Torres, J. R. M., & Muñoz, A. F. (2016). MODELO DE RUTEO PARA LA
RECOLECCIÓN DE MUESTRA DE FLUIDO DE POZO EN CAMPO QUIFA – META
COLOMBIA. | |
dc.identifier.citation | Razali, N. M. (2015). An Efficient Genetic Algorithm for Large Scale Vehicle Routing Problem
Subject to Precedence Constraints. Procedia - Social and Behavioral Sciences, 195, 1922–
1931. | |
dc.identifier.citation | Rieck, J., Ehrenberg, C., & Zimmermann, J. (2014). Many-to-many location-routing with inter-hub
transport and multi-commodity pickup-and-delivery. European Journal of Operational
Research, 236(3), 863–878. | |
dc.identifier.citation | Riquelme, J. P., Gamache, M., & Langevin, A. (2016). Location arc routing problem with inventory
constraints. Computers and Operations Research, 76, 84–94. | |
dc.identifier.citation | Rocha, R., Grossmann, I. E., & Poggi de Aragão, M. V. S. (2009). Petroleum allocation at
PETROBRAS: Mathematical model and a solution algorithm. Computers and Chemical
Engineering, 33(12), 2123–2133. | |
dc.identifier.citation | Rodina, A. (2016). Burning through : reducing associated petroleum gas flaring to enhance natural.
Law In Transition Journal, 83–91. | |
dc.identifier.citation | Rodríguez-Martín, I., Salazar-González, J. J., & Yaman, H. (2014). A branch-and-cut algorithm for
the hub location and routing problem. Computers and Operations Research, 50, 161–174. | |
dc.identifier.citation | Rosa, R. de A., Machado, A. M., Ribeiro, G. M., & Mauri, G. R. (2016). A mathematical model and
a Clustering Search metaheuristic for planning the helicopter transportation of employees to
the production platforms of oil and gas. Computers and Industrial Engineering, 101, 303–312. | |
dc.identifier.citation | Salhi, S., Imran, A., & Wassan, N. A. (2014). The multi-depot vehicle routing problem with
heterogeneous vehicle fl eet : Formulation and a variable neighborhood search
implementation. Computers and Operation Research, 52, 315–325. | |
dc.identifier.citation | Samanlioglu, F. (2013). A multi-objective mathematical model for the industrial hazardous waste
location-routing problem. European Journal of Operational Research, 226(2), 332–340. | |
dc.identifier.citation | Shishebori, D., Dayarian, I., Jabbarzadeh, A., & Barzinpour, F. (2014). A new hybrid approach to
discrete multiple facility location problem. The International Journal of Advanced
Manufacturing Technology, 71(1–4), 127–139. | |
dc.identifier.citation | Siddiqui, A. W., & Verma, M. (2015). A bi-objective approach to routing and scheduling maritime
transportation of crude oil. Transportation Research Part D: Transport and Environment, 37,
65–78. | |
dc.identifier.citation | Tan, S. H., & Barton, P. I. (2015). Optimal dynamic allocation of mobile plants to monetize
associated or stranded natural gas, part I: Bakken shale play case study. Energy, 93, 1581–
1594 | |
dc.identifier.citation | The World Bank. (2015). Regional Gas Seminar. Maputo. Recuperado de
http://docplayer.net/42912426-Global-initiative-combining-forces-to-end-routine-gasflaring.html | |
dc.identifier.citation | The World Bank. (2016). Global Gas Flaring Reduction. World Bank Group. Washington.
Recuperado de
http://documents.worldbank.org/curated/en/590561468765565919/pdf/295540Regulati1aring0
no10301public1.pdf | |
dc.identifier.citation | Ting, C. J., & Chen, C. H. (2013). A multiple ant colony optimization algorithm for the capacitated
location routing problem. International Journal of Production Economics, 141(1), 34–44. | |
dc.identifier.citation | Tunalıoğlu, R., Koç, Ç., & Bektaş, T. (2016). A multiperiod location-routing problem arising in the
collection of Olive Oil Mill Wastewater. Journal of the Operational Research Society, 67(7),
1–13 | |
dc.identifier.citation | Unidad de Planeación Minero Energética. (2015a). Plan energetico nacional colombia : ideario
energético 2050. Bogotá. Recuperado de
http://www.upme.gov.co/docs/pen/pen_idearioenergetico2050.pdf | |
dc.identifier.citation | Unidad de Planeación Minero Energética. (2015b). Plan Indicativo de Abastecimiento de Gas
Natural. Recuperado de
http://www1.upme.gov.co/sites/default/files/Plan_Indicativo_Gas_Natural_2015.pdf | |
dc.identifier.citation | Unidad de Planeación Minero Energética. (2016). Consulta Series de Tiempo. Recuperado March
21, 2017, de
http://www.upme.gov.co/generadorconsultas/Consulta_Series.aspx?idModulo=3&tipoSerie=1
38 | |
dc.identifier.citation | United States Energy Information Administration. (2016). Trends in US Oil and Natural Gas
Upstream Costs | |
dc.identifier.citation | Universidad Nacional de Colombia. Grupo de Investigación en Geofísica., J. G., Guerrero, J. G.,
Vargas, C. A., & Montes, L. (2010). Earth sciences research journal. Earth Sciences
Research Journal (Vol. 14). Universidad Nacional de Colombia, Facultad de Ciencias,
Departamento de Geociencías, Grupo de Investigación en Geofísica. | |
dc.identifier.citation | Venkata Narasimha, K., Kivelevitch, E., Sharma, B., & Kumar, M. (2013). An ant colony
optimization technique for solving min-max Multi-Depot Vehicle Routing Problem. Swarm
and Evolutionary Computation, 13, 63–73. | |
dc.identifier.citation | Wood, D. A. (2016). Evolutionary memetic algorithms supported by metaheuristic profiling
effectively applied to the optimization of discrete routing problems. Journal of Natural Gas
Science and Engineering, 35, 997–1014. | |
dc.identifier.citation | Yildiz, B., Arslan, O., & Karaşan, O. E. (2016). A branch and price approach for routing and
refueling station location model. European Journal of Operational Research, 248(3), 815–
826. | |
dc.identifier.citation | You, P. S., & Hsieh, Y. C. (2012). A heuristic approach to a single stage assembly problem with
transportation allocation. Applied Mathematics and Computation, 218(22), 11100–11111. | |
dc.identifier.citation | Yu, V. F., Lin, S. W., Lee, W., & Ting, C. J. (2010). A simulated annealing heuristic for the
capacitated location routing problem. Computers and Industrial Engineering, 58(2), 288–299. | |
dc.identifier.citation | Zhang, J., Zhao, Y., Xue, W., & Li, J. (2015). Vehicle routing problem with fuel consumption and
carbon emission. International Journal of Production Economics, 170, 234–242. | |
dc.identifier.citation | Zhao, J., & Verter, V. (2015). A bi-objective model for the used oil location-routing problem.
Computers and Operations Research, 62, 157–168. | |
dc.identifier.uri | http://hdl.handle.net/10818/33079 | |
dc.description | ssss | es_CO |
dc.description.abstract | El Gas Asociado al Petróleo (GAP) presente durante la extracción del petróleo es un gas combustible con uso industrial. Sin embargo, debido a su bajo valor comercial y bajos volúmenes de producción no es atractivo dentro de los campos donde se explota el petróleo crudo, por esta razón es común encontrar campos petroleros en donde este gas es quemado o simplemente liberado al ambiente, lo cual conlleva a un no aprovechamiento del recurso y un problema ambiental Rajović, Kiss, Maravić, y Bera, (2016). El actual auge ambientalista ha impulsado el interés de los grandes productores respecto al desarrollo de nuevos métodos para disminuir el impacto generado por el GAP, prueba de esto son los avances en sistemas de captación y utilización de este recurso. A pesar de esto, el costo del transporte ha sido limitante de la viabilidad de muchos proyectos relacionados. No obstante, mediante la aplicación de herramientas logísticas es posible determinar la localización de plantas de procesamiento o transformación de GAP dentro de los campos petroleros y diseñar redes de transporte vehicular que permitan conectar los puntos de producción con esos centros de utilización o transformación de este recurso. (Rodina, 2016) Dado que la industria petrolera es hasta el momento el principal pilar de la economía colombiana, es fácil encontrar ejemplos de quema y liberación de GAP en los campos petroleros del país. De acuerdo con información del Seminario Regional del Gas de 2015 realizado por el BANCO MUNDIAL (The World Bank, 2015), se estima que durante el periodo comprendido entre los años 1995 y 2006, en Colombia se quemaron al año en promedio 0,4 Billones de Metros Cúbicos (BMC) de GAP. En adición, mediante información satelital se determinó que la mayor concentración de Teas (antorchas que queman el gas) en Colombia se encuentra en los campos del Meta y Casanare aportando el 50% del gas quemado nacion. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Industria y comercio del petróleo | es_CO |
dc.subject | Gas natural | |
dc.subject | Gas natural -- Transporte | |
dc.subject | Gas -- Obtención y producción | |
dc.title | Modelo de localización y ruteo para el transporte del gas asociado a la producción de crudo en campos petroleros | es_CO |
dc.type | masterThesis | es_CO |
dc.publisher.program | Maestría en Gerencia de Operaciones | es_CO |
dc.publisher.department | Escuela Internacional de Ciencias Económicas y Administrativas | es_CO |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | restrictedAccess | es_CO |
dc.creator.degree | Magíster en Gerencia de Operaciones | es_CO |