Mostrar el registro sencillo del ítem
Desarrollo de un modelo matemático para establecer la relación fisiológica entre inflamación y sistema nervioso autónomo
dc.contributor.advisor | Botero Rosas, Daniel Alfonso | |
dc.contributor.author | León Ariza, Henry Humberto | |
dc.date.accessioned | 11/16/2017 10:22 | |
dc.date.available | 11/16/2017 10:22 | |
dc.date.issued | 2017-11-16 | |
dc.identifier.uri | http://hdl.handle.net/10818/31980 | |
dc.description | 211 páginas | es_CO |
dc.description.abstract | El sistema nervioso autónomo (SNA) es responsable entre otras de la regulación inmediata de las funciones vitales, este recibe información constante que se genera tanto interna como externamente, generando respuestas adaptativas inmediatas. Uno de los órganos blanco del SNA es el corazón, el cual modula de manera constante el tiempo entre un latido y otro, haciendo que el estudio de estas variaciones sea un excelente marcador de actividad autonómica. La evidencia sugiere que un estímulo aferente fundamental para la modulación del SNA está en la actividad del sistema inmune, a través de una comunicación mediada por citoquinas. Esta tesis encontró que el sistema inmune efectivamente tiene un impacto en las respuestas del SNA, el cual es explicado por medio de una relación matemática. Para llegar a esta conclusión se cumplieron cinco etapas: 1. Se reprodujo el análisis matemático de la variabilidad de la frecuencia cardiaca desarrollando modelos propios de evaluación. 2. Se determinó la influencia de la composición corporal en el SNA, encontrándose que el tejido adiposo se asocia a una mayor actividad simpática y menor de tipo parasimpático, mientras que la masa muscular se asocia a mayores respuestas parasimpáticas y menores simpáticas, esto especialmente en hombres. 3. Se encontró que la concentración plasmática de marcadores inflamatorios como la Interleucina 6 (IL-6) y especialmente su factor soluble (sIL6R) tienen una alta relación con las respuestas del SNA. 4. Se estableció la influencia que tiene la actividad corteza cerebral en la modulación de las respuestas del SNA. 5. Se generó un modelo matemático que demostró que la IL-6 y el sIL6R son responsables del 50% de los cambios de la actividad autonómica en reposo. | es_CO |
dc.format | application/pdf | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | es_CO |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Sistema nervioso autónomo | es_CO |
dc.subject | Frecuencia cardíaca | es_CO |
dc.subject | Sistema inmune | es_CO |
dc.title | Desarrollo de un modelo matemático para establecer la relación fisiológica entre inflamación y sistema nervioso autónomo | es_CO |
dc.type | doctoral thesis | es_CO |
dc.identifier.local | 267052 | |
dc.identifier.local | TE09375 | |
dc.type.hasVersion | publishedVersion | es_CO |
dc.rights.accessRights | openAccess | es_CO |
dcterms.references | Tresguerres JAF, Ariznavarreta C, Cachofeiro V, Cardinati D, Escrich E, Gil-Loyzaga P, et al. Fisiología Humana. Cuarta ed. 2010. } | en |
dcterms.references | Reyes-Juarez JL, Zarain-Herzberg A. Función del retículo sarcoplásmico y su papel en las enfermedades cardíacas. Arch Cardiol Méx 2006;76(suppl 4):18-32. | en |
dcterms.references | Maclennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 2003 Jul;4(7):566-77. | en |
dcterms.references | Chandler N, Aslanidi O, Buckley D, Inada S, Birchall S, Atkinson A, et al. Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area. Anat Rec (Hoboken ) 2011 Jun;294(6):970-9. | en |
dcterms.references | James TN. The internodal pathways of the human heart. Prog Cardiovasc Dis 2001 May;43(6):495-535. | en |
dcterms.references | Kurian T, Ambrosi C, Hucker W, Fedorov VV, Efimov IR. Anatomy and electrophysiology of the human AV node. Pacing Clin Electrophysiol 2010 Jun 1;33(6):754-62. | en |
dcterms.references | de Micheli SA, Iturralde TP, Aranda FA. About the specialized myocardial conducting tissue. Arch Cardiol Mex 2013 Oct;83(4):278-81. | en |
dcterms.references | Boron WF, Boulpaep EL. Medical Physiology. Segunda ed. Elsevier; 2009. | en |
dcterms.references | Monfredi O, Dobrzynski H, Mondal T, Boyett MR, Morris GM. The anatomy and physiology of the sinoatrial node--a contemporary review. Pacing Clin Electrophysiol 2010 Nov;33(11):1392-406. | en |
dcterms.references | Leon-Ariza HH, Valenzuela-Faccini N, Rojas-Ortega AC, Botero-Rosas DA. Nav1.5 cardiac sodium channels, regulation and clinical implications. Rev Fac Med 2014;62(4):587-92. | en |
dcterms.references | Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular function. World J Cardiol 2015 Apr 26;7(4):204-14. | en |
dcterms.references | Purves D. Neurociencia. Quinta ed. Médica Panamericana; 2016. | en |
dcterms.references | Mohrman DE, Heller LJ. Cardiovascular Physiology. Seventh ed. McGraw-Hill; 2010. | en |
dcterms.references | Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. Molecular signatures of G-protein-coupled receptors. Nature 2013 Feb 14;494(7436):185-94 | en |
dcterms.references | Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Molecular Biology of The Cell. Sixth ed. New York: Garland Science; 2015. | en |
dcterms.references | Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Molecular Biology of The Cell. Sixth ed. New York: Garland Science; 2015. | en |
dcterms.references | Mighiu AS, Heximer SP. Controlling Parasympathetic Regulation of Heart Rate: A Gatekeeper Role for RGS Proteins in the Sinoatrial Node. Front Physiol 2012;3:204. | en |
dcterms.references | Larsson HP. How is the heart rate regulated in the sinoatrial node? Another piece to the puzzle. J Gen Physiol 2010 Sep;136(3):237-41. | en |
dcterms.references | Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis 2008 May;50(6):404-19. | en |
dcterms.references | Valente M, De SC, de Martino RP, Di M, V, Di MS, De LT. The direct effect of the thyroid hormone on cardiac chronotropism. Arch Int Physiol Biochim 1989 Dec;97(6):431-40. | en |
dcterms.references | Johnson BD, Zheng W, Korach KS, Scheuer T, Catterall WA, Rubanyi GM. Increased expression of the cardiac L-type calcium channel in estrogen receptordeficient mice. J Gen Physiol 1997 Aug;110(2):135-40. | en |
dcterms.references | Er F, Gassanov N, Brandt MC, Madershahian N, Hoppe UC. Impact of dihydrotestosterone on L-type calcium channels in human ventricular cardiomyocytes. Endocr Res 2009;34(3):59-67. | en |
dcterms.references | Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol 2015;6:19. | en |
dcterms.references | Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 2001 Oct;24(10):1793-8. | en |
dcterms.references | HOLTER NJ. New method for heart studies. Science 1961 Oct 20;134(3486):1214-20. | en |
dcterms.references | Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, et al. Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res 2012 Feb;35(2):132-41. | en |
dcterms.references | Albaghdadi M. Baroreflex control of long-term arterial pressure . Rev Bras Hipertens 2007;14(4):212-25. | en |
dcterms.references | Crystal GJ, Salem MR. The Bainbridge and the "reverse" Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg 2012 Mar;114(3):520-32. | en |
dcterms.references | Swenne CA. Baroreflex sensitivity: mechanisms and measurement. Neth Heart J 2013 Feb;21(2):58-60. | en |
dcterms.references | Andrade DC, Lucero C, Toledo C, Madrid C, Marcus NJ, Schultz HD, et al. Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BioMed Research International 2015;2015(Article ID 467597):1-8. | en |
dcterms.references | Moreira TS, Takakura AC, Damasceno RS, Falquetto B, Totola LT, Sobrinho CR, et al. Central chemoreceptors and neural mechanisms of cardiorespiratory control. Braz J Med Biol Res 2011 Sep;44(9):883-9. | en |
dcterms.references | Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest 2004 Feb;125(2):683-90. | en |
dcterms.references | Gladwell VF, Fletcher J, Patel N, Elvidge LJ, Lloyd D, Chowdhary S, et al. The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J Physiol 2005 Sep 1;567(Pt 2):713-21. | en |
dcterms.references | Benarroch EE. Central Autonomic Control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton FR, editors. Primer on the Autonomic Nervous System. Tercera ed. Academic Press; 2012. p. 9-12. | en |
dcterms.references | Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron 2013 Feb 20;77(4):624-38. | en |
dcterms.references | Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med 2009 Apr;37(2):141-53 | en |
dcterms.references | Barbas H, Saha S, Rempel-Clower N, Ghashghaei T. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 2003 Oct 10;4:25. | en |
dcterms.references | Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin Exp Pharmacol Physiol 2005 May;32(5-6):450-6 | en |
dcterms.references | Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006 Dec 14;444(7121):860-7. | en |
dcterms.references | de Rooij SR, Nijpels G, Nilsson PM, Nolan JJ, Gabriel R, Bobbioni-Harsch E, et al. Low-grade chronic inflammation in the relationship between insulin sensitivity and cardiovascular disease (RISC) population: associations with insulin resistance and cardiometabolic risk profile. Diabetes Care 2009 Jul;32(7):1295-301. | en |
dcterms.references | Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNFalpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007 Apr;48(4):751-62 | en |
dcterms.references | Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun 2010;11:145-56. | en |
dcterms.references | Trzeciak-Ryczek A, Tokarz-Deptula B, Niedzwiedzka-Rystwej P, Deptula W. Adipose tissue – component of the immune system. Centr Eur J Immunol 2011;36(2):95-9. | en |
dcterms.references | Wang M, Markel T, Crisostomo P, Herring C, Meldrum KK, Lillemoe KD, et al. Deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta. Am J Physiol Heart Circ Physiol 2007 Apr;292(4):H1694-H1699 | en |
dcterms.references | Kishore R, Tkebuchava T, Sasi SP, Silver M, Gilbert HY, Yoon YS, et al. Tumor necrosis factor-alpha signaling via TNFR1/p55 is deleterious whereas TNFR2/p75 signaling is protective in adult infarct myocardium. Adv Exp Med Biol 2011;691:433-48. | en |
dcterms.references | Cortez-Cooper M, Meaders E, Stallings J, Haddow S, Kraj B, Sloan G, et al. Soluble TNF and IL-6 receptors: indicators of vascular health in women without cardiovascular disease. Vasc Med 2013 Oct;18(5):282-9. | en |
dcterms.references | Kleinbongard P, Heusch G, Schulz R. TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 2010 Sep;127(3):295- 314 | en |
dcterms.references | Zhang H, Park Y, Wu J, Chen X, Lee S, Yang J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 2009 Feb;116(3):219-30. | en |
dcterms.references | Glund S, Krook A. Role of interleukin-6 signalling in glucose and lipid metabolism. Acta Physiol 2008;192:37-48. | en |
dcterms.references | Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and antiinflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011 May;1813(5):878-88 | en |
dcterms.references | Demyanets S, Huber K, Wojta J. Vascular effects of glycoprotein130 ligands--part I: pathophysiological role. Vascul Pharmacol 2012 Jan;56(1-2):34-46. | en |
dcterms.references | Pal M, Febbraio MA, Whitham M. From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol 2014 Apr;92(4):331-9. | en |
dcterms.references | Munoz-Canoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 2013 Sep;280(17):4131-48. | en |
dcterms.references | Fantuzzi G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine 2013 Oct;64(1):1-10. | en |
dcterms.references | Baldasseroni S, Antenore A, Di SC, Orso F, Lonetto G, Bartoli N, et al. Adiponectin, diabetes and ischemic heart failure: a challenging relationship. Cardiovasc Diabetol 2012;11:151. | en |
dcterms.references | Friedrichsen M, Mortensen B, Pehmoller C, Birk JB, Wojtaszewski JF. Exerciseinduced AMPK activity in skeletal muscle: role in glucose uptake and insulin sensitivity. Mol Cell Endocrinol 2013 Feb 25;366(2):204-14. | en |
dcterms.references | Golbidi S, Badran M, Laher I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res 2012;2012:941868. | en |
dcterms.references | Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003 Jun;111(12):1805-12. | en |
dcterms.references | Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 2009 Sep;94(9):3171-82. | en |
dcterms.references | Albert MA. Biomarkers and heart disease. J Clin Sleep Med 2011 Oct 15;7(5 Suppl):S9-11. | en |
dcterms.references | Hayashino Y, Jackson JL, Hirata T, Fukumori N, Nakamura F, Fukuhara S, et al. Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metabolism 2014 Mar;63(3):431-40. | en |
dcterms.references | Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev 2013 Mar;14(3):232-44. | en |
dcterms.references | Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskeletal Disorders 2012;13(218):1-13. | en |
dcterms.references | Pierson RN. A brief history of body composition-from F. D. Moore to the new Reference Man. Acta Diabetol 2003;40(Suppl 1):S114-S116. | en |
dcterms.references | Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. J Endocrinol 2013 Jan;216(1):T17-T36. | en |
dcterms.references | Korda M, Kubant R, Patton S, Malinski T. Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol 2008 Oct;295(4):H1514-H1521. | en |
dcterms.references | Swaroop JJ, Rajarajeswari D, Naidu JN. Association of TNF-alpha with insulin resistance in type 2 diabetes mellitus. Indian J Med Res 2012;135:127-30. | en |
dcterms.references | Pedersen BK. Muscle as a secretory organ. Compr Physiol 2013 Jul;3(3):1337-62. | en |
dcterms.references | Leon-Ariza HH, Melo CA, Ramírez JF. Papel de la producción de miokinas a través del ejercicio. J Sport Health Res 2012;4(2):157-66. | en |
dcterms.references | Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiol Genomics 2014 Apr 1;46(7):256-67. | en |
dcterms.references | Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014 Feb;25(2):89-98. | en |
dcterms.references | Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growthrelated genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes (Lond) 2014 Mar 11. | en |
dcterms.references | Nikolic VN, Jevtovic-Stoimenov T, Stokanovic D, Milovanovic M, VelickovicRadovanovic R, Pesic S, et al. An inverse correlation between TNF alpha serum levels and heart rate variability in patients with heart failure. J Cardiol 2013 Jul;62(1):37-43. | en |
dcterms.references | Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, et al. Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 2009 Sep 1;83(4):737-46. | en |
dcterms.references | Wei SG, Zhang ZH, Beltz TG, Yu Y, Johnson AK, Felder RB. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines. Hypertension 2013 Jul;62(1):118-25. | en |
dcterms.references | Hoyda TD, Samson WK, Ferguson AV. Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology 2009 Feb;150(2):832-40. | en |
dcterms.references | Zapata P, Larrain C, Reyes P, Fernandez R. Immunosensory signalling by carotid body chemoreceptors. Respir Physiol Neurobiol 2011 Sep 30;178(3):370-4. | en |
dcterms.references | Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014 May;182:15-41. | en |
dcterms.references | Janig W. Sympathetic nervous system and inflammation: a conceptual view. Auton Neurosci 2014 May;182:4-14. | en |
dcterms.references | Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE. alpha1- adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 2011 Aug;338(2):648-57 | en |
dcterms.references | Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci 2014 May;182:65-9. | en |
dcterms.references | Downs AM, Bond CE, Hoover DB. Localization of alpha7 nicotinic acetylcholine receptor mRNA and protein within the cholinergic anti-inflammatory pathway. Neuroscience 2014 Apr 25;266:178-85. | en |
dcterms.references | Sun Y, Li Q, Gui H, Xu DP, Yang YL, Su DF, et al. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of proinflammatory cytokines. Cell Res 2013 Nov;23(11):1270-83. | en |
dcterms.references | Cancello R, Zulian A, Maestrini S, Mencarelli M, Della BA, Invitti C, et al. The nicotinic acetylcholine receptor alpha7 in subcutaneous mature adipocytes: downregulation in human obesity and modulation by diet-induced weight loss. Int J Obes (Lond) 2012 Dec;36(12):1552-7. | en |
dcterms.references | Dym CL. Principles of Mathematical Modeling. Segunda ed. San Diego (USA): Elsevier; 2004. | en |
dcterms.references | Shiavi R. Introduction to Applied Statistical Signal Analysis. Tercera ed. California USA: Elsevier; 2007. | en |
dcterms.references | Acharya UR, Suri JS, Spaan JAE, Krishnan SM. Advances in Cardiac Signal Processing. Primera ed. Berlin (Alemania): Springer; 2007. | en |
dcterms.references | Migliaro ER, Canetti R, Contreras P, Hakas M, Eirea G, Machado A. Procesamiento de señales para el estudio de la Variabilidad de la Frecuencia Cardiaca. Procesamiento de señales e imágenes: Teoría y Aplicaciones.Buenos Aires (Argentina): Facultad Regional de Buenos Aires, Universidad Tecnológica Nacional; 2004. | en |
dcterms.references | Lessard CS. Signal Processing of Random Physiological Signals. Primera ed. Texas (USA): Morgan & Claypool Publishers; 2006. | en |
dcterms.references | Cobelli C, Carson E. Introduction to Modeling in Physiology and Medicine. Primera ed. Netherlands: Elsevier; 2008. | en |
dcterms.references | Smith S. The Scientist and Engineer's Guide to Digital Signal Processing. Segunda ed. San Diego (USA): California Technical Publishing; 1999. | en |
dcterms.references | Khoo MCK. Physiological Control Systems, Analysis, Simulation, and Estimation. Primera ed. New Jersey (USA): Wiley-Interscience; 2000. | en |
dcterms.references | Theis FJ, Meyer-Bäse A. Biomedical Signal Analysis: Contemporary Methods and Applications. Primera ed. Massachusetts (USA): Massachusetts Institute of Technology; 2010. | en |
dcterms.references | Tarvainen MP, Niskanen JP, Lipponen JA, Ranta-Aho PO, Karjalainen PA. Kubios HRV--heart rate variability analysis software. Comput Methods Programs Biomed 2014;113(1):210-20. | en |
dcterms.references | Hernandez SR, Fernández CC. Metodología de la investigación. Primera ed. México: McGraw-Hill Interamericana; 1991. | en |
dcterms.references | Rodriguez-Linares L, Lado MJ, Vila XA, Mendez AJ, Cuesta P. gHRV: Heart rate variability analysis made easy. Comput Methods Programs Biomed 2014 Aug;116(1):26-38. | en |
dcterms.references | Chang CC, Hsu HY, Hsiao TC. The interpretation of very high frequency band of instantaneous pulse rate variability during paced respiration. Biomed Eng Online 2014;13:46. | en |
dcterms.references | Vila XA, Lado MJ, Mendez AJ, Olivieri DN. An R package for Heart Rate Variability analysis. IEEE International Symposium on Intelligent Signal Processing 2009;217- 22 | en |
dcterms.references | Kaufmann T, Sutterlin S, Schulz SM, Vogele C. ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis. Behav Res Methods 2011 Dec;43(4):1161-70. | en |
dcterms.references | Perakakis P, Joffily M, Taylor M, Guerra P, Vila J. KARDIA: a Matlab software for the analysis of cardiac interbeat intervals. Comput Methods Programs Biomed 2010 Apr;98(1):83-9. | en |
dcterms.references | Vila BN, Rodriguez-Linares L, Cuesta P, Lado MJ, Mendez AJ, Vila XA. gVARVI: A graphical software tool for the acquisition of the heart rate in response to external stimuli. Comput Methods Programs Biomed 2016 Aug;132:197-205 | en |
dcterms.references | Klemenc M, Strumbelj E. Predicting the outcome of head-up tilt test using heart rate variability and baroreflex sensitivity parameters in patients with vasovagal syncope. Clin Auton Res 2015 Dec;25(6):391-8. | en |
dcterms.references | Maestri R, Pinna GD. POLYAN: a computer program for polyparametric analysis of cardio-respiratory variability signals. Comput Methods Programs Biomed 1998 Apr;56(1):37-48 | en |
dcterms.references | Shafiq H, McGregor C, Murphy B. The impact of cervical manipulation on heart rate variability. Conf Proc IEEE Eng Med Biol Soc 2014;2014:3406-9. | en |
dcterms.references | Evans S, Seidman LC, Tsao JC, Lung KC, Zeltzer LK, Naliboff BD. Heart rate variability as a biomarker for autonomic nervous system response differences between children with chronic pain and healthy control children. J Pain Res 2013;6:449-57 | en |
dcterms.references | Polar. RS800CX Manual del Usuario. http://support polar com/e_manuals/RS800CX/Polar_RS800CX_user_manual_Espanol/manual pdf 2013 | en |
dcterms.references | Hynynen E, Konttinen N, Kinnunen U, Kyrolainen H, Rusko H. The incidence of stress symptoms and heart rate variability during sleep and orthostatic test. Eur J Appl Physiol 2011 May;111(5):733-41. | en |
dcterms.references | Malik M. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996 Mar 1;93(5):1043-65. | en |
dcterms.references | Peltola MA. Role of editing of R-R intervals in the analysis of heart rate variability. Front Physiol 2012;3:148. | en |
dcterms.references | Boor C. A Practical Guide to Splines. Primera ed. New-York: Springer; 1978. | en |
dcterms.references | Boardman A, Schlindwein FS, Rocha AP, Leite A. A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas 2002 May;23(2):325-36. | en |
dcterms.references | Kim KK, Baek HJ, Lim YG, Park KS. Effect of missing RR-interval data on nonlinear heart rate variability analysis. Comput Methods Programs Biomed 2012 Jun;106(3):210-8 | en |
dcterms.references | Tarvainen MP, Ranta-Aho PO, Karjalainen PA. An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 2002 Feb;49(2):172-5 | en |
dcterms.references | Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996 Mar 1;93(5):1043-65. | en |
dcterms.references | Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH. Five minute recordings of heart rate variability for population studies: repeatability and agesex characteristics. Heart 1998 Aug;80(2):156-62. | en |
dcterms.references | Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981 Jul 10;213(4504):220-2. | en |
dcterms.references | Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 1994 Oct;90(4):1826-31. | en |
dcterms.references | Moody GB. Spectral analysis of heart rate without resampling. London UK. 1993. | en |
dcterms.references | Perini R, Orizio C, Baselli G, Cerutti S, Veicsteinas A. The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol Occup Physiol 1990;61(1-2):143-8. | en |
dcterms.references | Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep 2007 Jul;30(7):913-9. | en |
dcterms.references | Lombardi F. Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 2000 Jan 4;101(1):8-10. | en |
dcterms.references | Carrasco S, Gaitan MJ, Gonzalez R, Yanez O. Correlation among Poincare plot indexes and time and frequency domain measures of heart rate variability. J Med Eng Technol 2001 Nov;25(6):240-8 | en |
dcterms.references | Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 2001 Nov;48(11):1342-7. | en |
dcterms.references | Toichi M, Sugiura T, Murai T, Sengoku A. A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J Auton Nerv Syst 1997 Jan 12;62(1-2):79-84. | en |
dcterms.references | Fusheng Y, Bo H, Qingyu T. Approximate Entropy and Its Application to Biosignal Analysis. In: Akay M, editor. Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling volume II.New York: IEEE Press; 2012. | en |
dcterms.references | Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000 Jun;278(6):H2039-H2049. | en |
dcterms.references | Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995;5(1):82-7. | en |
dcterms.references | Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Biomed Eng 2003 Oct;50(10):1143-51. | en |
dcterms.references | Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr 1997;17:527-58. | en |
dcterms.references | Amato MC, Guarnotta V, Giordano C. Body composition assessment for the definition of cardiometabolic risk. J Endocrinol Invest 2013 Jul;36(7):537-43. | en |
dcterms.references | Gierach M, Gierach J, Ewertowska M, Arndt A, Junik R. Correlation between Body Mass Index and Waist Circumference in Patients with Metabolic Syndrome. ISRN Endocrinol 2014;2014:514589. | en |
dcterms.references | Ellis KJ. Selected body composition methods can be used in field studies. J Nutr 2001;131(5):1589S-95S. | en |
dcterms.references | Pedersen BK. Muscle as a secretory organ. Compr Physiol 2013 Jul;3(3):1337-62. | en |
dcterms.references | Brandt C, Pedersen BK. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010;2010:520258. | en |
dcterms.references | Fasshauer M, Bluher M. Adipokines in health and disease. Trends Pharmacol Sci 2015 Jul;36(7):461-70. | en |
dcterms.references | Carter JL. Somatotipo. In: Norton K, Olds T, editors. Antropométrica. Primera ed. Rosario (Argentina): Biosystem; 1996. p. 99-115. | en |
dcterms.references | Leon-Ariza HH, Torres AM, Arias I, Zea-Robles AC. Análisis del índice de masa corporal, porcentaje de grasa y somatotipo en estudiantes universitarios de primer semestre. Revista de Investigación: Cuerpo, Cultura y Movimiento 2013;2(3 - 4):37-49 | en |
dcterms.references | Peterson HR, Rothschild M, Weinberg CR, Fell RD, McLeish KR, Pfeifer MA. Body fat and the activity of the autonomic nervous system. N Engl J Med 1988 Apr 28;318(17):1077-83. | en |
dcterms.references | Poehlman ET, Gardner AW, Goran MI, Arciero PJ, Toth MJ, Ades PA, et al. Sympathetic nervous system activity, body fatness, and body fat distribution in younger and older males. J Appl Physiol (1985 ) 1995 Mar;78(3):802-6. | en |
dcterms.references | Virtanen R, Jula A, Kuusela T, Helenius H, Voipio-Pulkki LM. Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity. J Hum Hypertens 2003 Mar;17(3):171-9. | en |
dcterms.references | Kudat H, Akkaya V, Sozen AB, Salman S, Demirel S, Ozcan M, et al. Heart rate variability in diabetes patients. J Int Med Res 2006 May;34(3):291-6. | en |
dcterms.references | Kim JA, Park YG, Cho KH, Hong MH, Han HC, Choi YS, et al. Heart rate variability and obesity indices: emphasis on the response to noise and standing. J Am Board Fam Pract 2005 Mar;18(2):97-103. | en |
dcterms.references | Molfino A, Fiorentini A, Tubani L, Martuscelli M, Rossi FF, Laviano A. Body mass index is related to autonomic nervous system activity as measured by heart rate variability. Eur J Clin Nutr 2009 Oct;63(10):1263-5. | en |
dcterms.references | Rutherford WJ, Diemer GA, Scott ED. Comparison of Bioelectrical Impedance and Skinfolds with Hydrodensitometry in the Assessment of Body Composition in Healthy Young Adults. ICHPER-SD Journal of Research 2011;6(2):56-60. | en |
dcterms.references | International Society for the Advancement of Kinanthropometry. International Standards for Anthropometric Assessment. Primera ed. Underdale (Australia): ISAK; 2001. | en |
dcterms.references | Ivorra A. Bioimpedance Monitoring for physicians: an overview. Centre Nacional de Microelectrònica Biomedical Applications Group 2003;1-35. | en |
dcterms.references | Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr 2004 Oct;23(5):1226-43 | en |
dcterms.references | Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 2014;14(6):10895-928. | en |
dcterms.references | Bolfe VJ, Ribas S, I, Montebelo MIL, Guirro RRJ. Electrical impedance behavior of biological tissues during trascutaneus electrical stimulation. Rev Bras fisioter 2007;11(2):135-45. | en |
dcterms.references | Yuhasz MS. Physiscal Fitness Manual. London Ontario: Universidad de Western Ontario; 1974. | en |
dcterms.references | Doupe MB, Martin AD, Searle MS, Kriellaars DJ, Giesbrecht GG. A new Formula for Population-Based Estimation of Whole Body Muscle Mass in Males. Can J Appl Physiol 2010;22(6):598-608. | en |
dcterms.references | Rocha MSL. Peso ósseo do brasileiro de ambos os sexos de 17 a 25 años. Arq Anat Antrop 1975;1:445-51. | en |
dcterms.references | Carter JL. The Heath-Carter Anthropometric somatotype -Instruction manual-. San Diego: Department of Exercise and Nutritional Sciences; 2002. | en |
dcterms.references | Ross WD, Marfell-Jones M. Kineanthropometry. In: MacDougal J, Wenger H, Green H, editors. Physiological Tests for Elite Athletes. Segunda ed. Champaign (IL): Human Kinetics; 1991. p. 223-308. | en |
dcterms.references | Tarvainen MP, Ranta-Aho PO, Karjalainen PA. An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng 2002 Feb;49(2):172-5. | en |
dcterms.references | Carter JL. The Heath-Carter somatotype method. San Diego State University 1975. | en |
dcterms.references | Pescatello LS. Health-Related Physical Fitness Testing and Interpretation. In: Thompson PD, editor. Guidelines for Exercise Testing and Prescription. Novena ed. Filadelfia (USA): ACSM; 2014. p. 72-107. | en |
dcterms.references | Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 2014;14(6):10895-928. | en |
dcterms.references | Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986 Feb 8;1(8476):307-10 | en |
dcterms.references | Koenig J, Jarczok MN, Warth M, Ellis RJ, Bach C, Hillecke TK, et al. Body mass index is related to autonomic nervous system activity as measured by heart rate variability--a replication using short term measurements. J Nutr Health Aging 2014 Mar;18(3):300-2. | en |
dcterms.references | Koenig J, Windham BG, Ferrucci L, Sonntag D, Fischer JE, Thayer JF, et al. Association Strength of Three Adiposity Measures with Autonomic Nervous System Function in Apparently Healthy Employees. J Nutr Health Aging 2015 Nov;19(9):879-82. | en |
dcterms.references | Esco MR, Williford HN. Race influences the relationship between aerobic power and heart rate recovery. J Sports Med Phys Fitness 2013 Dec;53(6):583-7. | en |
dcterms.references | Baek J, Park D, Kim I, Won JU, Hwang J, Roh J. Autonomic dysfunction of overweight combined with low muscle mass. Clin Auton Res 2013 Dec;23(6):325- 31. | en |
dcterms.references | Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci Biobehav Rev 2016 May;64:288-310. | en |
dcterms.references | Tanu A, Jyotsna S. A Comparative Study Of Heart Rate Variability Between Pre And Post Menopausal Women From Health Care Profession. IJBAP 2012;1(1):49- 52 | en |
dcterms.references | Yildirir A, Kabakci G, Akgul E, Tokgozoglu L, Oto A. Effects of menstrual cycle on cardiac autonomic innervation as assessed by heart rate variability. Ann Noninvasive Electrocardiol 2002 Jan;7(1):60-3. | en |
dcterms.references | Du XJ, Fang L, Kiriazis H. Sex dimorphism in cardiac pathophysiology: experimental findings, hormonal mechanisms, and molecular mechanisms. Pharmacol Ther 2006 Aug;111(2):434-75 | en |
dcterms.references | Wranicz JK, Rosiak M, Cygankiewicz I, Kula P, Kula K, Zareba W. Sex steroids and heart rate variability in patients after myocardial infarction. Ann Noninvasive Electrocardiol 2004 Apr;9(2):156-61. | en |
dcterms.references | Montano N, Porta A, Cogliati C, Costantino G, Tobaldini E, Casali KR, et al. Heart rate variability explored in the frequency domain: a tool to investigate the link between heart and behavior. Neurosci Biobehav Rev 2009 Feb;33(2):71-80. | en |
dcterms.references | Somlev P. The Effects of Orthostatic Test on Poincaré Plot Indexes of Heart Rate Variability in Trained and Untrained Subjects. Research in Kinesiology 2015;43(1):71-6 | en |
dcterms.references | da Silva VP, de Oliveira NA, Silveira H, Mello RG, Deslandes AC. Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol 2015 Mar;20(2):108-18. | en |
dcterms.references | Townend JN, al-Ani M, West JN, Littler WA, Coote JH. Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension 1995 Jun;25(6):1270-5 | en |
dcterms.references | Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med 2005;35(4):339-61. | en |
dcterms.references | Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res 2013 Oct;36(10):845-51. | en |
dcterms.references | Oliveira NL, Ribeiro F, Alves AJ, Teixeira M, Miranda F, Oliveira J. Heart rate variability in myocardial infarction patients: effects of exercise training. Rev Port Cardiol 2013 Sep;32(9):687-700. | en |
dcterms.references | Eikelis N, Schlaich M, Aggarwal A, Kaye D, Esler M. Interactions between leptin and the human sympathetic nervous system. Hypertension 2003 May;41(5):1072-9. | en |
dcterms.references | Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity (Silver Spring) 2006 Aug;14 Suppl 5:216S21S. | en |
dcterms.references | Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 2009 Feb;53(2):375-80. | en |
dcterms.references | Zapata P, Larrain C, Reyes P, Fernandez R. Immunosensory signalling by carotid body chemoreceptors. Respir Physiol Neurobiol 2011 Sep 30;178(3):370-4. | en |
dcterms.references | Florian JP, Pawelczyk JA. Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin Sci (Lond) 2010 Jan;118(1):61-9. | en |
dcterms.references | Gadegbeku CA, Dhandayuthapani A, Sadler ZE, Egan BM. Raising lipids acutely reduces baroreflex sensitivity. Am J Hypertens 2002 Jun;15(6):479-85. | en |
dcterms.references | Smith MM, Minson CT. Obesity and adipokines: effects on sympathetic overactivity. J Physiol 2012 Apr 15;590(8):1787-801. | en |
dcterms.references | Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol 2015 Feb;11(2):86-97. | en |
dcterms.references | Sanchez-Jimenez R, Alvarado-Vasquez N. IL-15 that a regulator of TNF-alpha in patients with diabetes mellitus type 2. Med Hypotheses 2013 Jun;80(6):776-7. | en |
dcterms.references | Sa-Nguanmoo P, Chattipakorn N, Chattipakorn SC. Potential roles of fibroblast growth factor 21 in the brain. Metab Brain Dis 2016 Apr;31(2):239-48. | en |
dcterms.references | Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014 Feb;25(2):89-98. | en |
dcterms.references | Hummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 2010 Sep 3;107(5):579-91. | en |
dcterms.references | Pedersen BK, Fischer CP. Beneficial health effects of exercise – the role of IL-6 as a myokine. Trends Pharmacol Sci 2007;28(4):152-6. | en |
dcterms.references | Moreno V, I, Golabkesh Z, Kallberg H, Leander K, de FU, Gigante B. Circulating levels of interleukin 6 soluble receptor and its natural antagonist, sgp130, and the risk of myocardial infarction. Atherosclerosis 2015 Jun;240(2):477-81. | en |
dcterms.references | Groot HE, Hartman MH, Gu YL, de Smet BJ, van den Heuvel AF, Lipsic E, et al. Soluble interleukin 6 receptor levels are associated with reduced myocardial reperfusion after percutaneous coronary intervention for acute myocardial infarction. Cytokine 2015 Jun;73(2):207-12 | en |
dcterms.references | Weiss TW, Arnesen H, Seljeflot I. Components of the interleukin-6 transsignalling system are associated with the metabolic syndrome, endothelial dysfunction and arterial stiffness. Metabolism 2013 Jul;62(7):1008-13. | en |
dcterms.references | Ravi AK, Khurana S, Lemon J, Plumb J, Booth G, Healy L, et al. Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res 2014;15:103. | en |
dcterms.references | Cortez-Cooper M, Meaders E, Stallings J, Haddow S, Kraj B, Sloan G, et al. Soluble TNF and IL-6 receptors: indicators of vascular health in women without cardiovascular disease. Vasc Med 2013 Oct;18(5):282-9. | en |
dcterms.references | Wang J, Wang Q, Han T, Li YK, Zhu SL, Ao F, et al. Soluble interleukin-6 receptor | en |
thesis.degree.discipline | Facultad de Ingeniería | es_CO |
thesis.degree.level | Doctorado en Biociencias | es_CO |
thesis.degree.name | Doctor en Biociencias | es_CO |