Show simple item record

dc.contributor.advisorQuintanilla Carvajal, María Ximena
dc.contributor.advisorSotelo Díaz, Luz Indira
dc.contributor.authorCabrera Trujillo, María Alejandra
dc.date.accessioned2016-04-13T16:35:41Z
dc.date.available2017-04-13T16:35:41Z
dc.date.created2016
dc.date.issued2016-04-13
dc.identifier.urihttp://hdl.handle.net/10818/23250
dc.description109 páginas incluye diagramas.
dc.description.abstractActualmente las emulsiones de aceite en agua han tomado mayor auge debido a su versatilidad y a la variedad en sus aplicaciones alimentarias tales como vinagretas o aderezos para ensaladas. Estas emulsiones se diseñan aportando propiedades funcionales específicas como la estabilidad representada por potencial Z, tamaño de partícula y reología. En este trabajo de maestría se evaluó el uso de rotor-stator y ultrasonido para obtener emulsiones aceite en agua estables. Se utilizó como sistema de homogenización primaria ultraturrax para obtener pre-emulsiones. Se realizó un diseño de mezclas por medio del programa Design Expert® versión 9.0.6.2 obteniendo 20 formulaciones, se seleccionaron las materias primas para realizar las emulsiones (60% p/p agua destilada, 15-20% p/p aceite de oliva, 0-5% p/p yema de huevo, 0-5% p/p mostaza inglesa, 10-15% vinagre blanco). Los resultados de esta investigación corresponden a las emulsiones más estables que fueron seleccionadas por la menor separación de fases en el tiempo evaluado, (7 días para ultraturrax y 28 días para rotor-stator y ultrasonido). Se obtuvieron 2 emulsiones más estables con ultraturrax, 3 con rotor-stator y 7 con ultrasonido. Se encontraron diferencias significativas en el potencial Z, en dónde las interacciones de los componentes en común para las tres tecnologías fueron aceite - yema y yema – vinagre. La estabilidad se evidenció en las emulsiones con mayor porcentaje de yema de huevo en su formulación. Por otro lado, se encontró que el uso de rotor-stator y ultrasonido tienen un efecto en el tamaño de partícula, obteniendo emulsiones más estables con el uso de ultrasonido causado por el efecto de cavitación. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://intellectum.unisabana.edu.co/handle/10818/23251es_CO
dc.description.statementofresponsibilityConfidencial por 1 año por solicitud del autor
dc.language.isoeses_CO
dc.publisherUniversidad de la Sabana
dc.sourceIntellectum Repositorio Universidad de la Sabana
dc.sourceUniversidad de la Sabana
dc.titleEfecto de ultrasonido y rotor-stator en la estabilidad de emulsiones O/W /es_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.type.localTesis de Maestría
dc.source.bibliographicCitationAbbas, S., Bashari, M., Akhtar, W., Li, W. W., & Zhang, X. (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrasonics Sonochemistry, 21(4), 1265–1274. doi:10.1016/j.ultsonch.2013.12.017
dc.source.bibliographicCitationAbismaïl, B., Canselier, J. P., Wilhelm, a. M., Delmas, H., & Gourdon, C. (1999). Emulsification by ultrasound: Drop size distribution and stability. Ultrasonics Sonochemistry, 6(1-2), 75–83. doi:10.1016/S1350-4177(98)00027-3
dc.source.bibliographicCitationAcedo-Carrillo, J. I., Rosas-Durazo, a., Herrera-Urbina, R., Rinaudo, M., Goycoolea, F. M., & Valdez, M. a. (2006). Zeta potential and drop growth of oil in water emulsions stabilized with mesquite gum. Carbohydrate Polymers, 65(3), 327–336. doi:10.1016/j.carbpol.2006.01.016
dc.source.bibliographicCitationAdjonu, R., Doran, G., Torley, P., & Agboola, S. (2014). Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering, 122, 15–27. doi:10.1016/j.jfoodeng.2013.08.034
dc.source.bibliographicCitationAnihouvi, P. P., Danthine, S., Kegelaers, Y., Dombree, A., & Blecker, C. (2013). Comparison of the physicochemical behavior of model oil-in-water emulsions based on different lauric vegetal fats. Food Research International, 53(1), 156–163. doi:10.1016/j.foodres.2013.04.011
dc.source.bibliographicCitationAwad, T. S., Moharram, H. a., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410–427. doi:10.1016/j.foodres.2012.05.004
dc.source.bibliographicCitationBehrend, O., Ax, K., & Schubert, H. (2000). Influence of continuous phase viscosity on emulsification by ultrasound. Ultrasonics Sonochemistry, 7(2), 77–85. doi:10.1016/S1350-4177(99)00029-2
dc.source.bibliographicCitationBortnowska, G., Balejko, J., Schube, V., Tokarczyk, G., Krzemińska, N., & Mojka, K. (2014). Stability and physicochemical properties of model salad dressings prepared with pregelatinized potato starch. Carbohydrate Polymers, 111, 624–632. doi:10.1016/j.carbpol.2014.05.015
dc.source.bibliographicCitationCalero, N., Muñoz, J., Cox, P. W., Heuer, A., & Guerrero, A. (2013). Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oil and potato protein. Food Hydrocolloids, 30(1), 152–162. doi:10.1016/j.foodhyd.2012.05.004
dc.source.bibliographicCitationCanselier, J. P., Delmas, H., Wilhelm, a M., & Abismaïl, B. (2002). Ultrasound emulsification - An overview. Journal of Dispersion Science and Technology, 23(1- 3), 333–349.
dc.source.bibliographicCitationCárcel, J. A. (2003). Influencia de los ultrasonidos de potencia en procesos de transferencia de materia.
dc.source.bibliographicCitationCárcel, J. a., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of high intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(August 2014), 185–193. doi:10.1080/07373930601161070
dc.source.bibliographicCitationCárcel, J. a., García-Pérez, J. V., Benedito, J., & Mulet, a. (2012). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110(2), 200–207. doi:10.1016/j.jfoodeng.2011.05.038
dc.source.bibliographicCitationChatsisvili, N. T., Amvrosiadis, I., & Kiosseoglou, V. (2012). Physicochemical properties of a dressing-type o/w emulsion as influenced by orange pulp fiber incorporation. LWT - Food Science and Technology, 46(1), 335–340. doi:10.1016/j.lwt.2011.08.019
dc.source.bibliographicCitationChemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. doi:10.1016/j.ultsonch.2010.11.023
dc.source.bibliographicCitationChung, C., Degner, B., & McClements, D. J. (2013). Designing reduced-fat food emulsions: Locust bean gum-fat droplet interactions. Food Hydrocolloids, 32(2), 263– 270. doi:10.1016/j.foodhyd.2013.01.008
dc.source.bibliographicCitationChung, C., & McClements, D. J. (2014). Structure-function relationships in food emulsions: Improving food quality and sensory perception. Food Structure, 1(2), 106– 126. doi:10.1016/j.foostr.2013.11.002
dc.source.bibliographicCitationCoulson, J. M., & Richardson, J. F. (2003). Ingeniería Química, Operaciones Básicas, Tomo II. Barcelona: Reverté S.A.
dc.source.bibliographicCitationCoupland, J. N. (2004). Low intensity ultrasound. Food Research International, 37, 537– 543. doi:10.1016/j.foodres.2004.01.011
dc.source.bibliographicCitationarine, S., Christophe, V., & Gholamreza, D. (2011). Emulsification properties of proteins extracted from beef lungs in the presence of xanthan gum using a continuous rotor/stator system. LWT - Food Science and Technology, 44(4), 1179–1188. doi:10.1016/j.lwt.2010.11.025
dc.source.bibliographicCitationDay, L., Golding, M., Xu, M., Keogh, J., Clifton, P., & Wooster, T. J. (2014). Tailoring the digestion of structured emulsions using mixed monoglyceride-caseinate interfaces. Food Hydrocolloids, 36, 151–161. doi:10.1016/j.foodhyd.2013.09.019
dc.source.bibliographicCitationde Melo, A. N. F., de Souza, E. L., da Silva Araujo, V. B., & Magnani, M. (2015). Stability, nutritional and sensory characteristics of French salad dressing made with mannoprotein from spent brewer’s yeast. LWT - Food Science and Technology, 62(1), 771–774. doi:10.1016/j.lwt.2014.06.050
dc.source.bibliographicCitationDelarue, J. J., Lawlor, B., & Rogeaux, M. (2015). Rapid Sensory Profiling Techniques and Related Methods, Applications in New Product Development and Consumer Research.
dc.source.bibliographicCitationDi Mattia, C., Balestra, F., Sacchetti, G., Neri, L., Mastrocola, D., & Pittia, P. (2015). Physical and structural properties of extra-virgin olive oil based mayonnaise. LWT - Food Science and Technology, 62(1), 764–770. doi:10.1016/j.lwt.2014.09.065
dc.source.bibliographicCitationDimakou, C., & Oreopoulou, V. (2012). Antioxidant activity of carotenoids against the oxidative destabilization of sunflower oil-in-water emulsions. LWT - Food Science and Technology, 46(2), 393–400. doi:10.1016/j.lwt.2011.12.013
dc.source.bibliographicCitationDonsì, F., Wang, Y., & Huang, Q. (2011). Freeze-thaw stability of lecithin and modified starch-based nanoemulsions. Food Hydrocolloids, 25(5), 1327–1336. doi:10.1016/j.foodhyd.2010.12.008
dc.source.bibliographicCitationFischer, V., Marcus, J., Touraud, D., Diat, O., & Kunz, W. (2015). Towards surfactant-free and water-free microemulsions. Journal of Colloid and Interface Scienceolloid and Interface Science, 453, 186–193. doi:10.1016/j.jcis.2015.04.069
dc.source.bibliographicCitationGallego-Juárez, J. a., Rodriguez, G., Acosta, V., & Riera, E. (2010). Power ultrasonic transducers with extensive radiators for industrial processing. Ultrasonics Sonochemistry, 17(6), 953–964. doi:10.1016/j.ultsonch.2009.11.006
dc.source.bibliographicCitationGennaro, A. R. (2003). Remington Farmacia. Buenos Aires: Panamericana.
dc.source.bibliographicCitationGhosh, S., Cramp, G. L., & Coupland, J. N. (2006). Effect of aqueous composition on the freeze-thaw stability of emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 272(1-2), 82–88. doi:10.1016/j.colsurfa.2005.07.013
dc.source.bibliographicCitationGuillaume, C., Katline, C. V., Benoit, L., Thierry, A., & Stefan, M. (2014). Changes in ultrasound velocity and attenuation indicate freezing of xylem sap. Agricultural and Forest Meteorology, 185, 20–25. doi:10.1016/j.agrformet.2013.10.009
dc.source.bibliographicCitationHasenhuettl, G. L. (2008). Overview of Food Emulsifiers. Food Emulsifiers and Their Applications, 1–9. doi:10.1007/978-0-387-75284-6_3
dc.source.bibliographicCitationHerrera, M. (2012). Analytical techniques for studying the physical properties of lipid emulsions. Retrieved from http://books.google.com/books?hl=en&lr=&id=XRyhbcLuZ8AC&oi=fnd&pg=PR5&dq =Analytical+Techniques+for+Studying+the+Physical+Properties+of+Lipid+Emulsion s&ots=6z5u4WBaki&sig=yJ_m059xar_Q1cSLx8aO7ejtWss\nhttp://books.google.co m/books?hl=en&lr=&id=XRyhbcLuZ8AC&
dc.source.bibliographicCitationHughes, C. (1994). Guía de Aditivos. Zaragoza: Editorial ACRIBA S.A.
dc.source.bibliographicCitationJasińska, M., Bałdyga, J., Hall, S., & Pacek, A. W. (2014). Dispersion of oil droplets in rotor-stator mixers: Experimental investigations and modeling. Chemical Engineering and Processing, 84, 45–53. doi:10.1016/j.cep.2014.02.008
dc.source.bibliographicCitationJiménez-munguía, C. E. K. M. T. (2012). Factores principales que intervienen en la estabilidad de una emulsión doble, 2, 1–18.
dc.source.bibliographicCitationJuliano, P., Kutter, a., Cheng, L. J., Swiergon, P., Mawson, R., & Augustin, M. a. (2011). Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrasonics Sonochemistry, 18(5), 963–973. doi:10.1016/j.ultsonch.2011.03.003
dc.source.bibliographicCitationJulio, L. M., Ixtaina, V. Y., Fernández, M. A., Sánchez, R. M. T., Wagner, J. R., Nolasco, S. M., & Tomás, M. C. (2015). Chia seed oil-in-water emulsions as potential delivery systems of ω-3 fatty acids. Journal of Food Engineering, 162, 48–55. doi:10.1016/j.jfoodeng.2015.04.005
dc.source.bibliographicCitationKaci, M., Meziani, S., Arab-Tehrany, E., Gillet, G., Desjardins-Lavisse, I., & Desobry, S. (2014). Emulsification by high frequency ultrasound using piezoelectric transducer: Formation and stability of emulsifier free emulsion. Ultrasonics Sonochemistry, 21(3), 1010–1017. doi:10.1016/j.ultsonch.2013.11.006
dc.source.bibliographicCitationKiosseoglou, V. (2003). Egg yolk protein gels and emulsions. Current Opinion in Colloid and Interface Science, 8(4-5), 365–370. doi:10.1016/S1359-0294(03)00094-3
dc.source.bibliographicCitationLaca, a., Sáenz, M. C., Paredes, B., & Díaz, M. (2010). Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. Journal of Food Engineering, 97(2), 243–252. doi:10.1016/j.jfoodeng.2009.10.017
dc.source.bibliographicCitationMa, Q., & Zhong, Q. (2015). Incorporation of soybean oil improves the dilutability of essential oil microemulsions. Food Research International, 71, 118–125. doi:10.1016/j.foodres.2015.02.026
dc.source.bibliographicCitationMa, Z., Boye, J. I., Fortin, J., Simpson, B. K., & Prasher, S. O. (2013). Rheological, physical stability, microstructural and sensory properties of salad dressings supplemented with raw and thermally treated lentil flours. Journal of Food Engineering, 116(4), 862–872. doi:10.1016/j.jfoodeng.2013.01.024
dc.source.bibliographicCitationMaa, Y. F., & Hsu, C. (1996). Liquid-liquid emulsification by rotor/stator homogenization. Journal of Controlled Release, 38, 219–228. doi:10.1016/0168-3659(95)00123-9
dc.source.bibliographicCitationMaan, A. A., Schroën, K., & Boom, R. (2011). Spontaneous droplet formation techniques for monodisperse emulsions preparation - Perspectives for food applications. Journal of Food Engineering, 107(3-4), 334–346. doi:10.1016/j.jfoodeng.2011.07.008
dc.source.bibliographicCitationMagnusson, E., & Nilsson, L. (2011). Interactions between hydrophobically modified starch and egg yolk proteins in solution and emulsions. Food Hydrocolloids, 25(4), 764–772. doi:10.1016/j.foodhyd.2010.09.006
dc.source.bibliographicCitationMaher, P. G., Roos, Y. H., & Fenelon, M. a. (2014). Physicochemical properties of spray dried nanoemulsions with varying final water and sugar contents. Journal of Food Engineering, 126, 113–119. doi:10.1016/j.jfoodeng.2013.11.001
dc.source.bibliographicCitationMaindarkar, S. N., Bongers, P., & Henson, M. a. (2013). Predicting the effects of surfactant coverage on drop size distributions of homogenized emulsions. Chemical Engineering Science, 89, 102–114. doi:10.1016/j.ces.2012.12.001
dc.source.bibliographicCitationMason, T. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, Mason, T. J., Riera, E., Vercet, A., & Lopez-buesa, P. (2005). Application of Ultrasound, 0–12.
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsrestrictedAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos
dc.subject.armarcEquipo ultrasónico
dc.subject.armarcAceites vegetales -- Colombia
dc.subject.armarcAlimentos -- Análisis -- Colombia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record