Mostrar el registro sencillo del ítem

dc.contributor.advisorQuiroz Padilla, María Fernanda
dc.contributor.authorSánchez Sarmiento, Luisa Paola
dc.date.accessioned2014-04-24T16:46:37Z
dc.date.available2014-04-24T16:46:37Z
dc.date.created2014
dc.date.issued2014-04-24
dc.identifier.citationAkirav, I., Raizel, H., & Maroun, M. (2006). Enhancement of conditioned fear extinction by infusion of the GABAA agonist muscimol into the rat prefrontal cortex and amygdala. 23(3), 758-764.
dc.identifier.citationAmargós-Bosch, M., Bortolozzi, A., Puig, M. V., Serrats, J., Adell, A., Celada, P., & Artigas, F. (2004). Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. 14(3), 281-299
dc.identifier.citationAndrade, R. (2011). Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology, 61(3), 382-386. doi: 10.1016/j.neuropharm.2011.01.015
dc.identifier.citationBaddeley, A. D., & Hitch, G. J. (1994 ). Developments in the concept of working memory. . 8(4), 485. doi:10.1037/0894-4105.8.4.485
dc.identifier.citationBall, K. T., & Slane, M. (2012). Differential involvement of prelimbic and infralimbic medial prefrontal cortex in discrete cue-induced reinstatement of 3,4- methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats. Psychopharmacology, 224(3), 377-385. doi: 10.1007/s00213-012-2762-5
dc.identifier.citationBechara, A., Tranel, D., & Damasio, H. (2000). Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain, 123(11).
dc.identifier.citationBirrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. 20(11), 4320-4324.
dc.identifier.citationBoulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behavioural Brain Research, 179(2), 219-228. doi: 10.1016/j.bbr.2007.02.005
dc.identifier.citationBraquehais, M. D., Ramos-Quiroga, J. A., & Sher, L. (2010). Impulsivity: current and future trends in pharmacological treatment. Expert Review of Neurotherapeutics, 10(9), 1367-1369. doi: 10.1586/ern.10.100
dc.identifier.citationBrown, S. M., Manuck, S. B., Flory, J. D., & Hariri, A. R. (2006). Neural basis of individual differences in impulsivity: Contributions of corticolimbic circuits for behavioral arousal and control. Emotion, 6(2), 239-245. doi: 10.1037/1528-3542.6.2.239
dc.identifier.citationBurgos-Robles, A., Bravo-Rivera, H., & Quirk, G. J. (2013). Prelimbic and Infralimbic Neurons Signal Distinct Aspects of Appetitive Instrumental Behavior. Plos One, 8(2). doi: 10.1371/journal.pone.0057575
dc.identifier.citationBussey TJ, M. J., Everitt BJ, Robbins TW. (1997). Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behavioral Neuroscience 111.((5)), 920-936.
dc.identifier.citationChang, C.-h., & Maren, S. (2010). Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats. Behavioral Neuroscience, 124(3), 391-397. doi: 10.1037/a0019479
dc.identifier.citationChudasama, Y., Passetti, F., Rhodes, S. E. V., Lopian, D., Desai, A., & Robbins, T. W. (2004). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity (vol 146, pg 105, 2003). Behavioural Brain Research, 152(2), 453-453. doi: 10.1016/j.bbr.2004.03.014
dc.identifier.citationCiaramelli, E., & Spaniol, J. (2009). Ventromedial prefrontal damage and memory for context: Perceptual versus semantic features. Neuropsychology, 23(5), 649-657. doi: 10.1037/a0015937
dc.identifier.citationClark, nbsp, Bechara, Damasio, Aitken, Sahakian, & Robbins. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131(5).
dc.identifier.citationContreras, D., Catena, A., Candido, A., Perales, J. C., & Maldonado, A. (2008). The role of ventromedial prefrontal cortex in emotional decision-making. International Journal of Clinical and Health Psychology, 8(1), 285-313.
dc.identifier.citationCools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions. Neuropsychopharmacology, 36(1), 98-113. doi: 10.1038/npp.2010.121
dc.identifier.citationClark, nbsp, Bechara, Damasio, Aitken, Sahakian, & Robbins. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131(5).
dc.identifier.citationContreras, D., Catena, A., Candido, A., Perales, J. C., & Maldonado, A. (2008). The role of ventromedial prefrontal cortex in emotional decision-making. International Journal of Clinical and Health Psychology, 8(1), 285-313.
dc.identifier.citationCools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions. Neuropsychopharmacology, 36(1), 98-113. doi: 10.1038/npp.2010.121
dc.identifier.citationCoutureau, E., & Killcross, S. (2003). Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. Behavioural Brain Research, 146(1–2), 167- 174. doi: http://dx.doi.org/10.1016/j.bbr.2003.09.025
dc.identifier.citationCowan, N. (2008). What are the differences between long-term, short-term, and working memory?. 169, 323-338
dc.identifier.citationDalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28(7), 771-784. doi: 10.1016/j.neubiorev.2004.09.006
dc.identifier.citationDe Bartolo, P., Mandolesi, L., Federico, F., Foti, F., Cutuli, D., Gelfo, F., & Petrosini, L. (2009). Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory, 92(3), 310-317. doi: 10.1016/j.nlm.2009.03.008
dc.identifier.citationDelatour, B., & Gisquest-Verrier, P. (1999). Lesions of the prelimbic–infralimbic cortices in rats do not disrupt response selection processes but induce delay-dependent deficits: Evidence for a role in working memory?. . 113(5), 941
dc.identifier.citationFellows, L. K., & Farah, M. J. (2003). Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain, 126(8).
dc.identifier.citationFellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 2669- 2674. doi: 10.1093/cercor/bhl176
dc.identifier.citationFitzgerald, P. (2011). A neurochemical yin and yang: does serotonin activate and norepinephrine deactivate the prefrontal cortex? Psychopharmacology, 213, 171–182.
dc.identifier.citationFontanez-Nuin, D. E., Santini, E., Quirk, G. J., & Porter, J. T. (2011). Memory for Fear Extinction Requires mGluR5-Mediated Activation of Infralimbic Neurons. Cerebral Cortex, 21(3), 727-735. doi: 10.1093/cercor/bhq147
dc.identifier.citationFuster, J. M. (2001). The prefrontal cortex - An update: time is of the essence. Neuron, 30(2), 319-333. doi: 10.1016/s0896-6273(01)00285-9
dc.identifier.citationGisquet-Verrier, P., & Delatour, B. (2006). The role of the rat prelimbic/infralimbic cortex in working memory: Not involved in the short-term maintenance but in monitoring and processing functions. Neuroscience, 141(2), 585-596. doi: http://dx.doi.org/10.1016/j.neuroscience.2006.04.009
dc.identifier.citationHaddon, J. E., & Killcross, S. (2011). INACTIVATION OF THE INFRALIMBIC PREFRONTAL CORTEX IN RATS REDUCES THE INFLUENCE OF INAPPROPRIATE HABITUAL RESPONDING IN A RESPONSE-CONFLICT TASK. Neuroscience, 199, 205-212. doi: 10.1016/j.neuroscience.2011.09.065
dc.identifier.citationHeidbreder, C. A., & Groenewegen, H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neuroscience and Biobehavioral Reviews, 27(6), 555-579. doi: 10.1016/j.neubiorev.2003.09.003
dc.identifier.citationHerkenham, M., & Nauta, W. J. H. (1979). Efferent connections of the habenular nuclei in the rat. The Journal of Comparative Neurology, 187(1), 19-47. doi: 10.1002/cne.901870103
dc.identifier.citationHerold, C. (2010). NMDA and D2-Like Receptors Modulate Cognitive Flexibility in a Color Discrimination Reversal Task in Pigeons. Behavioral Neuroscience, 124(3), 381-390. doi: 10.1037/a0019504
dc.identifier.citationHess, U. S., Gall, C. M., Granger, R., & Lynch, G. (1997). Differential patterns of c-fos mRNA expression in amygdala during successive stages of odor discrimination learning. 4(3), 262-283.
dc.identifier.citationHoover, W., & Vertes, R. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Structure and Function, 212(2), 149-179. doi: 10.1007/s00429-007-0150-4
dc.identifier.citationHoover, W. B., & Vertes, R. P. (2012). Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: a single and double retrograde fluorescent labeling study. Brain Structure & Function, 217(2), 191-209. doi: 10.1007/s00429-011-0345-6
dc.identifier.citationJinks, A. L., & McGregor, I. S. (1997). Modulation of anxiety-related behaviours following lesions of the prelimbic or infralimbic cortex in the rat. Brain Research, 772(1–2), 181-190. doi: http://dx.doi.org/10.1016/S0006-8993(97)00810-X
dc.identifier.citationKesner, R. P. (2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. . 28, 219–228
dc.identifier.citationKosaki, Y., & Watanabe, S. (2012). Dissociable roles of the medial prefrontal cortex, the anterior cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial reversal of three-choice discrimination in rats. Behavioural Brain Research, 227(1), 81- 90. doi: 10.1016/j.bbr.2011.10.039
dc.identifier.citationKrettek, J. E., & Price, J. L. (1977). The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. The Journal of Comparative Neurology, 171(2), 157- 191. doi: 10.1002/cne.901710204
dc.identifier.citationKublik, E., & Sara, S. J. Activity in medial frontal cortex during odour discrimination learning in the rat: Neuronal response to experimental cortex. 1, 1-40.
dc.identifier.citationKuipers, R., Mensinga, G. M., Boers, J., Klop, E. M., & Holstege, G. (2006). Infralimbic cortex projects to all parts of the pontine and medullary lateral tegmental field in cat. European Journal of Neuroscience, 23(11), 3014-3024. doi: 10.1111/j.1460-9568.2006.04843.x
dc.identifier.citationLaidlaw, A. H., Browman, E. M., & Brown, V. J. (2004). Depletion of serotonin by ICV 5,7-DHT increases reaction time but not impulsivity in a cued reaction time task. Journal of Psychopharmacology, 18(3), A32-A32.
dc.identifier.citationLaureiro-Martínez, D., Brusoni, E., & Zollo, M. (2009). Cognitive Flexibility in Decision Making a Neurologial Model of Learning and Change. CROMA - Center for Research in Organization and Management - Bocconi University 1, 1-43.
dc.identifier.citationLeshem, R., & Glicksohn, J. (2007). The construct of impulsivity revisited. Personality and Individual Differences, 43(4), 681-691. doi: 10.1016/j.paid.2007.01.015
dc.identifier.citationMaroun, M., Kavushansky, A., Holmes, A., Wellman, C., & Motanis, H. (2012). Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex. Plos One, 7(5). doi: 10.1371/journal.pone.0035853
dc.identifier.citationMartin, M., & Rubin, R. (1995). A new measure of cognitive flexibility. Psychological Reports, 76(623–6).
dc.identifier.citationMorgane, P. J., Galler, J. R., & Mokler, D. J. (2005). A review of systems and networks of the limbic forebrain/limbic midbrain. Progress in Neurobiology, 75(2), 143-160. doi: 10.1016/j.pneurobio.2005.01.001
dc.identifier.citationMurphy, E., Dalley, J., & Robbins, T. (2005). Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology, 179(1), 99-107. doi: 10.1007/s00213-004-2068-3
dc.identifier.citationNelson, A. J. D., Cooper, M. T., Thur, K. E., Marsden, C. A., & Cassaday, H. J. (2011). The Effect of Catecholaminergic Depletion Within the Prelimbic and Infralimbic Medial Prefrontal Cortex on Recognition Memory for Recency, Location, and Objects. Behavioral Neuroscience, 125(3), 396-403. doi: 10.1037/a0023337
dc.identifier.citationOualian, C., & Gisquet-Verrier, P. (2010). The differential involvement of the prelimbic and infralimbic cortices in response conflict affects behavioral flexibility in rats trained in a new automated strategy-switching task. Learning & Memory, 17(12), 654-668.
dc.identifier.citationPassetti, F., Dalley, J., & Robbins, T. (2003). Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacology, 165(2), 136-145. doi: 10.1007/s00213-002- 1227-7
dc.identifier.citationPuig, M. V., Celada, P., & Artigas, F. (2004). Control serotoninérgico de la corteza prefrontal. . 39, 539-547.
dc.identifier.citationQuiroz-Padilla, M. F., Guillazo-Blanch, G., Vale-Martinez, A., Torras-Garcia, M., & MartiNicolovius, M. (2007). Effects of parafascicular excitotoxic lesions on two-way active avoidance and odor-discrimination. Neurobiology of Learning and Memory, 88(2), 198- 207. doi: 10.1016/j.nlm.2007.06.002
dc.identifier.citationRagozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. In G. Schoenbaum, J. A. Gottfried, E. A. Murray & S. J. Ramus (Eds.), Linking Affect to Action: Critical Contributions of the Orbitofrontal Cortex (Vol. 1121, pp. 355-375).
dc.identifier.citationRagozzino, M. E., & Kesner, R. P. (1998). The effects of muscarinic cholinergic receptor blockade in the rat anterior cingulate and prelimbic/infralimbic cortices on spatial working memory. . 69(3), 241-257.
dc.identifier.citationRagozzino, M. E., Kim, J., Hassert, D., Minniti, N., & Kiang, C. (2003). The contribution of the rat prelimbic-infralimbic areas to different forms of task switching. Behavioral Neuroscience, 117(5), 1054-1065. doi: 10.1037/0735-7044.117.5.1054
dc.identifier.citationRhodes, S. E. V., & Killcross, A. S. (2007). Lesions of rat infralimbic cortex enhance renewal of extinguished appetitive Pavlovian responding. European Journal of Neuroscience, 25(8), 2498-2503. doi: 10.1111/j.1460-9568.2007.05486.x
dc.identifier.citationRobinson, E. S. J., Dalley, J. W., Theobald, D. E. H., Glennon, J. C., Pezze, M. A., Murphy, E. R., & Robbins, T. W. (2008). Opposing roles for 5-HT(2A) and 5-HT(2C) receptors in the nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task. Neuropsychopharmacology, 33(10), 2398-2406. doi: 10.1038/sj.npp.1301636
dc.identifier.citationRosenkranz, J. A., & Grace, A. A. (2002). Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. Journal of Neuroscience, 22(1), 324-337.
dc.identifier.citationSalazar, R. F., White, W., Lacroix, L., Feldon, J., & White, I. M. (2004). NMDA lesions in the medial prefrontal cortex impair the ability to inhibit responses during reversal of a simple spatial discrimination. Behavioural Brain Research, 152(2), 413-424. doi: http://dx.doi.org/10.1016/j.bbr.2003.10.034
dc.identifier.citationSchoenbaum, G., Chiba, A. A., & Gallagher, M. (1999). Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. . 19(5), 1876-1884.
dc.identifier.citationShaw, C. L., Watson, G. D. R., Hallock, H. L., Cline, K. M., & Griffin, A. L. (2013). The role of the medial prefrontal cortex in the acquisition, retention, and reversal of a tactile visuospatial conditional discrimination task. Behavioural Brain Research, 236(0), 94-101. doi: http://dx.doi.org/10.1016/j.bbr.2012.08.024
dc.identifier.citationTerreberry, R. R., & Neafsey, E. J. (1987). The rat medial frontal cortex projects directly to autonomic regions of the brainstem. Brain Research Bulletin, 19(6), 639-649. doi: http://dx.doi.org/10.1016/0361-9230(87)90050-5
dc.identifier.citationTorras-Garcia, M., Lelong, J., Tronel, S., & Sara, S. J. (2005). Reconsolidation after remembering an odor-reward association requires NMDA receptors. Learning & Memory, 12(1), 18-22. doi: 10.1101/lm.80905
dc.identifier.citationTronel, S., Feenstra, M. G. P., & Sara, S. J. (2004). Noradrenergic action in prefrontal cortex in the late stage of memory consolidation. Learning & Memory, 11(4), 453-458. doi: 10.1101/lm.74504
dc.identifier.citationTronel, S., Milekic, M. H., & Alberini, C. M. (2005). Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. Plos Biology, 3(9), 1630-1638. doi: 10.1371/journal.pbio.0030293
dc.identifier.citationTronel, S., & Sara, S. J. (2002). Mapping of olfactory memory circuits: Region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learning & Memory, 9(3), 105-111. doi: 10.1101/lm.47802
dc.identifier.citationTronel, S., & Sara, S. J. (2003). Blockade of NMDA receptors in prelimbic cortex induces an enduring amnesia for odor-reward associative learning. Journal of Neuroscience, 23(13), 5472-5476.
dc.identifier.citationTseng, K. Y., & O'Donnell, P. (2007). D-2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse, 61(10), 843-850. doi: 10.1002/syn.20432
dc.identifier.citationValdés, J. L., & Torrealba L, F. (2006). La corteza prefrontal medial controla el alerta conductual y vegetativo: Implicancias en desórdenes de la conducta. 44(3). 195-204.
dc.identifier.citationvan Aerde, K. I., Heistek, T. S., & Mansvelder, H. D. (2008). Prelimbic and Infralimbic Prefrontal Cortex Interact during Fast Network Oscillations. Plos One, 3(7). doi: 10.1371/journal.pone.0002725
dc.identifier.citationVazquez-Borsetti, P., Celada, P., Cortes, R., & Artigas, F. (2011). Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. International Journal of Neuropsychopharmacology, 14(3), 289-302. doi: 10.1017/s1461145710000349
dc.identifier.citationVertes, R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience, 142(1), 1-20. doi: 10.1016/j.neuroscience.2006.06.027
dc.identifier.citationVillarejo-Rodríguez, I., Vale-Martínez, A., Guillazo-Blanch, G., & Martí-Nicolovius, M. (2010). dCycloserine in prelimbic cortex enhances relearning of an odor-reward associative task. Behavioural Brain Research, 213(1), 113-116. doi: http://dx.doi.org/10.1016/j.bbr.2010.04.016
dc.identifier.citationWinstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, 26(4), 379-395. doi: 10.1016/j.cpr.2006.01.001
dc.identifier.urihttp://hdl.handle.net/10818/10359
dc.description48 Páginas.
dc.description.abstractEste estudio evaluó la participación de la corteza infralímbica (IL) en los procesos del aprendizaje y reaprendizaje de ratas Wistar en la tarea de discriminación simple de olores. Para el logro de dicho objetivo, se realizaron lesiones bilaterales pre-entrenamiento con N-metil-D-Aspartato (NMDA) en la IL y se analizó el desempeño de los sujetos en la tarea de discriminación simple de olores (DSO) teniendo en cuenta la latencia (tiempo que tarda el animal en encontrar el reforzador en el aroma asociado), los errores (número de veces en que el animal busca el reforzador en el aroma que no ha sido asociado al refuerzo) y las omisiones (número de veces en que el animal se acerca al aroma correcto y no accede al reforzador). Los resultados muestran que en los tres primeros ensayos de la fase de adquisición, las ratas con lesión presentaron una latencia mayor que el grupo control vehículo ensayo 1: (P= 0.000); ensayo 2: (P= 0.022); ensayo 3: (P= 0.022), igualmente, presentaron un mayor número de errores y omisiones en el primer ensayo (P=0,000). Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/10360es_CO
dc.language.isoeses_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de la Sabana
dc.sourceIntellectum Repositorio Universidad de la Sabana
dc.subjectExperimentos en ratones -- Colombia
dc.subjectRatones -- Génetica
dc.subjectOlfato -- Olores
dc.titleParticipación de la corteza infralímbica en la tarea de discriminación simple de olores en ratases_CO
dc.typebachelorThesis
dc.publisher.programPsicología
dc.publisher.departmentFacultad de Psicología
dc.identifier.local259254
dc.identifier.localTE06401
dc.type.localTesis de pregrado
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreePsicólogo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem