dc.contributor.advisor | Sanchez Leal, Ligia Consuelo | |
dc.contributor.author | Uribe Muriel, Luz Angela | |
dc.date.accessioned | 2012-08-14T17:29:51Z | |
dc.date.available | 2012-08-14T17:29:51Z | |
dc.date.created | 2011 | |
dc.date.issued | 2012 | |
dc.identifier.citation | Angeline, P. J. (1998). Evolutionary optimization versus particle swarm
optimization: Philosophy and performance differences. Lecture Notes in Computer
Science., (1447), 601. | |
dc.identifier.citation | Application of predictive microbiology to estimate the number of bacillus cereus in
pasteurised milk at the point of consumption. (1999). Retrieved | |
dc.identifier.citation | Buchanan, R. L. (1993). Predictive food microbiology. Trends in Food Science &
Technology Trends in Food Science & Technology, 4(1), 6-11. | |
dc.identifier.citation | Chelouah, R., & Siarry, P. (2003). Genetic and nelder-mead algorithms hybridized
for a more accurate global optimization of continuous multiminima functions.
European Journal of Operational Research, 148(2), 335-348. | |
dc.identifier.citation | Dennis, J.,J.E., Woods, D. J. & RICE UNIV HOUSTON TX DEPT OF
COMPUTATIONAL AND APPLIED MATHEMATICS. (1985). Optimization on
microcomputers: The nelder-mead simplex algorithm. Retrieved | |
dc.identifier.citation | Eberhart, R. C., & Shi, Y. (1998). Comparison between genetic algorithms and
particle swarm optimization. Lecture Notes in Computer Science., (1447), 611. | |
dc.identifier.citation | Eberhart, R. C., & Xiaohui Hu. (1999). Human tremor analysis using particle swarm
optimization. Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, , 3 1930 Vol. 3. | |
dc.identifier.citation | Eberhart, & Yuhui Shi. (2001). Particle swarm optimization: Developments,
applications and resources. Evolutionary Computation, 2001. Proceedings of the 2001
Congress on, , 1 81-86 vol. 1. | |
dc.identifier.citation | FU, B., TAOUKIS, P. S., & LABUZA, T. P. (1991). Predictive microbiology for
monitoring spoilage of dairy products with time-temperature integrators. J Food
Science Journal of Food Science, 56(5), 1209-1215. | |
dc.identifier.citation | Glowworm swarm optimization : A multimodal function optimization paradigm with
applications to multiple signal source localization tasks. (2009). Retrieved | |
dc.identifier.citation | Hajmeer MN, Basheer IA, & Najjar YM. (1997). Computational neural networks for
predictive microbiology. II. application to microbial growth. International Journal of
Food Microbiology, 34(1), 51-66. | |
dc.identifier.citation | Kelley, C. T. (1999). Detection and remediation of stagnation in the nelder--mead
algorithm using a sufficient decrease condition. SIAM J.Optim.SIAM Journal on
Optimization, 10(1) | |
dc.identifier.citation | Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks,
1995. Proceedings., IEEE International Conference on, , 4 1942-1948 vol.4. | |
dc.identifier.citation | Krishnanand, K. N., & Ghose, D. (2005). Detection of multiple source locations
using a glowworm metaphor with applications to collective robotics. Swarm
Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, 84-91. | |
dc.identifier.citation | Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimization for
simultaneous capture of multiple local optima of multimodal functions. Swarm
Intelligence, 3(2), 87-124. | |
dc.identifier.citation | Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence
properties of the nelder--mead simplex method in low dimensions. SIAM J.Optim.SIAM
Journal on Optimization, 9(1) | |
dc.identifier.citation | Li Ning, Liu Fei, Sun Debao, & Huang Chang. (2004). Particle swarm optimization
for constrained layout optimization. Intelligent Control and Automation, 2004. WCICA
2004. Fifth World Congress on, , 3 2214-2218 Vol.3. | |
dc.identifier.citation | Lin, J. Y., Ying Wu, & Huang, T. S. (2004). 3D model-based hand tracking using
stochastic direct search method. Automatic Face and Gesture Recog nition, 2004.
Proceedings. Sixth IEEE International Conference on, 693-698 | |
dc.identifier.citation | B. Barán, E. Kaszkurewicz y A. Bhaya. “Parallel Asynchronous Team Algorithms:
Convergence and Performance Analysis”. IEEE Transactions on Parallel & Distributed
Systems, Vol. 7, No. 7, pg. 677-688, Julio 1996. Estados Unidos. | |
dc.identifier.citation | Luersen, M. A., Le Riche, R., & Guyon, F. (2004). A constrained, globalized, and
bounded nelder?mead method for engineering optimization. Structural and
Multidisciplinary Optimization Structural and Multidisciplinary Optimization, 27(1-2),
43-54. | |
dc.identifier.citation | Lukasik S., Zak S., & 1st International Conference on Computational Collective
Intelligence,ICCCI 2009. (2009). Firefly algorithm for continuous constrained
optimization tasks. Lect.Notes Comput.Sci.Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5796 LNAI, 97-106. | |
dc.identifier.citation | McKinnon, K. I. M. (1998). Convergence of the nelder--mead simplex method to a
nonstationary point. SIAM J.Optim.SIAM Journal on Optimization, 9(1) | |
dc.identifier.citation | McMeekin TA, Olley J, Ratkowsky DA, & Ross T. (2002). Predictive microbiology:
Towards the interface and beyond. International Journal of Food Microbiology, 73(2-
3), 2-3. | |
dc.identifier.citation | Mcmeekin, T. A., & Ross, T. (2002). Predictive microbiology: Providing a
knowledge-based framework for change management. International Journal of Food
Microbiology., 78(1), 133. | |
dc.identifier.citation | Garcia, G. (2001). Modificaciones microbiológicas - organolépticas
de vegetales envasados en atmosfera modificada: Bases para el establecimiento de los
modelos predictivos del crecimiento microbiano. Universidad de Córdoba. Facultad de
Veterinaria. Departamento de Bromatología y Tecnología de los Alimentos. Tesis
Doctoral. | |
dc.identifier.citation | Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization.
Retrieved | |
dc.identifier.citation | Olsson, D. M., & Nelson, L. S. (1975). The nelder-mead simplex procedure for
function minimization. Technometrics, 17(1), 45-51. | |
dc.identifier.citation | Prasad, B., Krishnanand, K. N., & Ghose, D. (2006). Glowworm swarm based
optimization algorithm for multimodal functions with collective robotics applications.
Multiagent and Grid Systems, 2(3), 209-222. | |
dc.identifier.citation | Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm optimization in
electromagnetics. Antennas and Propagation, IEEE Transactions on, 52(2), 397-407. | |
dc.identifier.citation | Ross T, & McMeekin TA. (1994). Predictive microbiology. International Journal of
Food Microbiology, 23(3-4), 3-4. | |
dc.identifier.uri | http://hdl.handle.net/10818/3349 | |
dc.description | 180 Páginas. | |
dc.description.abstract | Los algoritmos de optimización son empleados en diferentes ramas de la ciencia, sin embargo, su inclusión en la solución de problemas microbiológicos es reciente. Esta tesis introduce en forma práctica, tres algoritmos evolutivos de búsqueda local (Algoritmo de Nelder Mead, Algoritmo de optimización de Enjambre de partículas (PSO), y Glowworm Swarm Optimization (Optimización de Enjambre de Luciérnagas) (GSO)) para solucionar un problema biológico en la erradicación de una bacteria causante de marchitez vascular. Los algoritmos demostraron ser una herramienta útil, práctica y moderna en para las aplicaciones en microbiología ya que permiten obtener una visión global del comportamiento de los microorganismos si se someten a variables que no han sido estudiadas en el laboratorio. | es_CO |
dc.language.iso | spa | es_CO |
dc.publisher | Universidad de La Sabana | |
dc.source | Universidad de La Sabana | |
dc.source | Intellectum Repositorio Universidad de La Sabana | |
dc.subject | Análisis combinatorio | es_CO |
dc.subject | Productos químicos | es_CO |
dc.subject | Algoritmos-Biomasa | es_CO |
dc.subject | Productos químicos de la Biomasa | es_CO |
dc.title | Diseño de un modelo de producción de biomasa bacteriana con el uso de algoritmos de optimización | es_CO |
dc.type | masterThesis | |
dc.publisher.program | Maestría en Diseño y Gestión de Procesos | |
dc.publisher.department | Facultad de Ingeniería | |
dc.identifier.local | 157732 | |
dc.identifier.local | TE05555 | |
dc.type.local | Tesis de maestría | |
dc.type.hasVersion | publishedVersion | |
dc.rights.accessRights | restrictedAccess | |
dc.creator.degree | Magíster en Diseño y Gestión de Procesos | |