Mostrar el registro sencillo del ítem

dc.contributor.advisorValero Valdivieso, Manuel Fernando
dc.contributor.advisorDíaz Barrera, Luis Eduardo
dc.contributor.authorUscátegui Maldonado, Yomaira Lisnedy
dc.date.accessioned5/23/2019 8:42
dc.date.available5/23/2019 8:42
dc.date.issued2019-03-14
dc.identifier.urihttp://hdl.handle.net/10818/35573
dc.description121 páginases_CO
dc.description.abstractLos poliuretanos (PUs) son ampliamente utilizados en la preparación de dispositivos médicos debido a su biocompatibilidad, biodegradabilidad y no toxicidad cuando se comparan con otros polímeros [Park 2013]. Dentro de las aplicaciones como biomateriales de los PUs se encuentran: suturas, catéteres, corazón artificial, prótesis vasculares, recubrimientos para heridas y revestimiento compatible con la sangre [Rocco 2014]. La aplicación de PUs para una función específica dentro del cuerpo humano depende de propiedades mecánicas, de adhesión, de superficie, biodegradabilidad, entre otras [Chen 2013, St John 2014]. Un grupo de biomateriales que se encuentran en constante desarrollo corresponde a los dispositivos para cierre de heridas donde se localizan las suturas. Hasta la fecha, los materiales de sutura que se emplean con mayor frecuencia en cirugías son polipropileno (no absorbible) y polidioxanona (absorbible) [Simón-Allué 2014]. Diversas investigaciones se han enfocado en introducir mejoras en los materiales de sutura, pero a la fecha aún se presentan inconvenientes [Linderman 2015].es_CO
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectPolímeroses_CO
dc.subjectAceite de ricinoes_CO
dc.subjectSuturas (Cirugía)es_CO
dc.subjectMateriales biomédicoses_CO
dc.titlePoliuretanos sintetizados a partir de aceite de higuerilla y diisocianatos candidatos en aplicaciones biomédicas como materiales para suturas no absorbibleses_CO
dc.typedoctoral thesises_CO
dc.identifier.local272175
dc.identifier.localTE10131
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dcterms.referencesGao, Z., Peng, J., Zhong, T., Sun, J., Wang, X., & Yue, C. (2012). Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydrate Polymers, 87(3), 2068–2075.en
dcterms.referencesArshad, N., Zia, K. M., Jabeen, F., Anjum, M. N., Akram, N., & Zuber, M. (2018). Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. International Journal of Biological Macromolecules, 111, 485–492.eng
dcterms.referencesBaimark, Y., Molloy, R., Molloy, N., Siripitayananon, J., Punyodom, W., & Sriyai, M. (2005). Synthesis, characterization and melt spinning of a block copolymer of L-lactide and ε-caprolactone for potential use as an absorbable monofilament surgical suture. Journal of Materials Science: Materials in Medicine, 16(8), 699–707.eng
dcterms.referencesBakhshi, H., Yeganeh, H., Mehdipour-Ataei, S., Shokrgozar, M. A., Yari, A., & SaeediEslami, S. N. (2013). Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Materials Science and Engineering C, 33(1), 153–64.eng
dcterms.referencesBasterretxea, A., Haga, Y., Sanchez-Sanchez, A., Isik, M., Irusta, L., Irusta, L., … Sardon, H. (2016). Biocompatibility and hemocompatibility evaluation of polyether urethanes synthesized using DBU organocatalyst. European Polymer Journal, 84, 750–758.eng
dcterms.referencesBat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. a. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9(3), 385– 98.eng
dcterms.referencesBergmeister, H., Seyidova, N., Schreiber, C., Strobl, M., Grasl, C., Walter, I., … Schima, H. (2015). Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomaterialia, 11, 104–113.eng
dcterms.referencesCalvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173–185.eng
dcterms.referencesChashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688–695.eng
dcterms.referencesChen, H., Yu, X., Zhou, W., Peng, S., & Zhao, X. (2018). Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polymer Testing, 70(July), 275–280.eng
dcterms.referencesChen, Q., Liang, S., & Thouas, G. a. (2013). Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 38(3–4), 584–671.eng
dcterms.referencesDas, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404.eng
dcterms.referencesDave, V. J., & Patel, H. S. (2017). Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. Journal of Saudi Chemical Society, 21, 18–24.eng
dcterms.referencesDomanska, A., & Boczkowska, A. (2014). Biodegradable polyurethanes from crystalline prepolymers. Polymer Degradation and Stability, 108, 175–181.eng
dcterms.referencesdos Santos, D., Tavares, L., & Batalha, G. (2012). Mechanical and physical properties investigation of polyurethane material obtained from renewable natural source. Journal of Achievements in Materials and Manufacturing Engineering, 54(2), 211–217.eng
dcterms.referencesDulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553– 560.eng
dcterms.referencesFernández-d’Arlas, B., Alonso-varona, A., Palomares, T., Corcuera, M. A., & Eceiza, A. (2015). Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polymer Degradation and Stability, 122, 153– 160.eng
dcterms.referencesFirdaus, F. E. (2014). Synergization of silicone with developed crosslinking to soy-based polyurethane foam matrix. Materials Science and Engineering, 58, 012023.eng
dcterms.referencesGanji, Y., Kasra, M., Salahshour, S., & Bagheri, M. (2014). Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol. Materials Science and Engineering CEngineering C, 42, 341–349.eng
dcterms.referencesGunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12(06), 301–47.eng
dcterms.referencesHe, W., & Benson, R. (2012). Polymeric biomaterials. In S. Ebnesajjad (Ed.), Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications (pp. 87–107). Elsevier.eng
dcterms.referencesIonescu, M., Radojčić, D., Wan, X., Shrestha, M. L., Petrović, Z. S., & Upshaw, T. A. (2016). Highly functional polyols from castor oil for rigid polyurethanes. European Polymer Journal, 84, 736–749.eng
dcterms.referencesIsmail, E. A., Motawie, A. M., & Sadek, E. M. (2011). Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egyptian Journal of Petroleum, 20, 1–8.eng
dcterms.referencesJavaid, M. A., Khera, R. A., Zia, K. M., Saito, K., Bhatti, I. A., & Asghar, M. (2018). Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential. International Journal of Biological Macromolecules, 115, 375–384.eng
dcterms.referencesJayavani, S., Sunanda, S., Varghese, T. O., & Nayak, S. K. (2017). Synthesis and characterizations of sustainable polyester polyols from non-edible vegetable oils: thermal and structural evaluation. Journal of Cleaner Production, 162, 795–805.eng
dcterms.referencesJuita, Dlugogorski, B. Z., Kennedy, E. M., & Mackie, J. C. (2012). Low temperature oxidation of linseed oil: a review. Fire Science Reviews, 1–36.eng
dcterms.referencesJutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115(November 2017), 41–48.eng
dcterms.referencesKiran, S., James, N. R., Jayakrishnan, A., & Joseph, R. (2012). Polyurethane thermoplastic elastomers with inherent radiopacity for biomedical applications. Journal of Biomedical Materials Research. Part A, 100(12), 3472–3479.eng
dcterms.referencesKotula, A. P., Snyder, C. R., & Migler, K. B. (2017). Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 117, 1–10.eng
dcterms.referencesKucinska-lipka, J., Gubanska, I., Strankowski, M., Cie, H., Filipowicz, N., & Janik, H. (2017). Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modi fi ed with L-ascorbic acid, as materials for soft tissue regeneration. Materials Science and Engineering C, 75, 671–681.eng
dcterms.referencesKumar, A., Lale, S. V, Alex, M. R. A., Choudhary, V., & Koul, V. (2017). Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: in-vitro and in-vivo studies. Colloids and Surfaces B: Biointerfaces, 149, 369–378.eng
dcterms.referencesLaube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.eng
dcterms.referencesLligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules, 11, 2825–2835.eng
dcterms.referencesLuo, Z., Shi, Y., Zhao, D., & He, M. (2011). Synthesis of epoxidatied castor oil and its effect on the properties of waterborne polyurethane. Procedia Engineering, 18, 37–42.eng
dcterms.referencesMadra, H., Tantekin-Ersolmaz, B., & Guner, F. S. (2009). Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polymer Testing, 28, 773–779.eng
dcterms.referencesMahkam, M., & Sharifi-Sanjani, N. (2003). Preparation of new biodegradable polyurethanes as a therapeutic agent. Polymer Degradation and Stability, 80(2), 199–202.eng
dcterms.referencesMaisonneuve, L., Chollet, G., Grau, E., & Cramail, H. (2016). Vegetable oils: a source of polyols for polyurethane materials. Oilseeds & Fats Crops and Lipids, 23(5), D508.eng
dcterms.referencesMangeon, C., Renard, E., Thevenieau, F., & Langlois, V. (2017). Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering C, 80, 760–770.eng
dcterms.referencesMiao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692–1704.eng
dcterms.referencesMiléo, P. C., Mulinari, D. R., Baptista, C. a. R. P., Rocha, G. J. M., & Gonçalves, a. R. (2011). Mechanical Behaviour of Polyurethane from Castor oil Reinforced Sugarcane Straw Cellulose Composites. Procedia Engineering, 10, 2068–2073.eng
dcterms.referencesMurray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49(7), 1782–1795.eng
dcterms.referencesMustapa, S. R., Aung, M. M., Ahmad, A., Mansor, A., & TianKhoon, L. (2016). Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices. Electrochimica Acta, 222, 293–302.eng
dcterms.referencesNg, W. S., Lee, C. S., Chuah, C. H., & Cheng, S. F. (2017). Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Industrial Crops and Products, 97, 65–78.eng
dcterms.referencesPatil, C. K., Rajput, S. D., Marathe, R. J., Kulkarni, R. D., Phadnis, H., Sohn, D., … Gite, V. V. (2017). Synthesis of bio-based polyurethane coatings from vegetable oil and dicarboxylic acids. Progress in Organic Coatings, 106, 87–95.eng
dcterms.referencesPetrović, Z. S., Milic, J., Zhang, F., & Ilavsky, J. (2017). Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer, 121, 26–37.eng
dcterms.referencesPfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent advances in vegetable oil-based polyurethanes. ChemSusChem, 4(6), 703–17.eng
dcterms.referencesPillai, P. K. S., Li, S., Bouzidi, L., & Narine, S. S. (2016). Metathesized palm oil polyol for the preparation of improved bio-based rigid and flexible polyurethane foams. Industrial Crops & Products, 83, 568–576.eng
dcterms.referencesQiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2013). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(εcaprolactone). Journal of Biomedical Materials Research. Part A, 101(1), 75–86.eng
dcterms.referencesReddy, R., Deopura, B. L., & Joshi, M. (2010). Dry-jet-wet spun polyurethanes fibers. I. Optimization of the spinning parameters. Journal of Applied Polymer Science, 118(4), 2291–2303.eng
dcterms.referencesSaciloto, T. R., Cervini, P., & Cavalheiro, É. T. G. (2013). Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screenprinted composite electrode. Journal of the Brazilian Chemical Society, 24(9), 1461– 1468.eng
dcterms.referencesScott Taylor, M., & Shalaby, S. W. (2013). Sutures. Biomaterials Science (Third Edit). Elsevier.eng
dcterms.referencesSharmin, E., Zafar, F., Akram, D., & Ahmad, S. (2013). Plant oil polyol nanocomposite for antibacterial polyurethane coating. Progress in Organic Coatings, 76, 541–547.eng
dcterms.referencesShelke, N., Nagarale, R., Kumbar, S. (2014). Polyurethanes. In Natural and Synthetic Biomedical Polymers (pp. 123–144). Saint Louis, MO, USA: Elsevier.eng
dcterms.referencesShourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947–952.eng
dcterms.referencesSimón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1–11.eng
dcterms.referencesSt John, K. R. (2014). The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1332–41.eng
dcterms.referencesSubramaniam, A., & Sethuraman, S. (2014). Biomedical applications of nondegradable polymers. In C. T. L. and M. D. Sangamesh G. Kumbar (Ed.), Natural and Synthetic Biomedical Polymers (pp. 301–308). Elsevier, Oxford.eng
dcterms.referencesThakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164.eng
dcterms.referencesUscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., & Valero, M. (2016). Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 27(18), 1860–1879.eng
dcterms.referencesUsman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.eng
dcterms.referencesValério, A., Araújo, P., & Sayer, C. (2013). Preparation of poly (urethane-urea) nanoparticles containing açaí oil by miniemulsion polymerization. Polímeros, 23, 451–455.eng
dcterms.referencesValero, M. F., & Gonzalez, a. (2012). Polyurethane adhesive system from castor oil modified by a transesterification reaction. Journal of Elastomers and Plastics, 44(5), 433–442.eng
dcterms.referencesVogels, R. R. M., Lambertz, A., Schuster, P., Jockenhoevel, S., Bouvy, N. D., DisselhorstKlug, C., … Klink, C. D. (2017). Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 105(1), 99–106.eng
dcterms.referencesVroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344.eng
dcterms.referencesWolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221.eng
dcterms.referencesWu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180(June 2017), 304–313.eng
dcterms.referencesZhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91– 143.eng
dcterms.referencesZhou, L., Yu, L., Ding, M., Li, J., Tan, H., Wang, Z., & Fu, Q. (2011). Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules, 44(4), 857–864.eng
dcterms.referencesZia, K. M., Barikani, M., Bhatti, I. A., Bhatti, M., & Bhatti, H. N. (2008). Synthesis and characterization of novel, biodegradable, thermally stable chitin-based polyurethane elastomers. Journal of Applied Polymer Science, 110, 769–776.eng
dcterms.referencesZia, K. M., Bhatti, H. N., & Ahmad Bhatti, I. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: a review. Reactive & Functional Polymers, 67(8), 675–692.eng
dcterms.referencesZieleniewska, M., Auguscik, M., Prociak, A., Rojek, P., & Ryszkowska, J. (2014). Polyurethane-urea substrates from rapeseed oil-based polyol for bone tissue cultures intended for application in tissue engineering. Poly. Degrad. and Stability,108,241–249eng
dcterms.referencesAnirudhan, T. S., Nair, S. S., & Nair, A. S. (2016). Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydrate Polymers, 152, 687–698.eng
dcterms.referencesArévalo, F., Uscategui, Y. L., Diaz, L., Cobo, M., & Valero, M. F. (2016). Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 31(5), 708–720.eng
dcterms.referencesAung, M. M., Yaakob, Z., Kamarudin, S., & Abdullah, L. C. (2014). Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Industrial Crops and Products, 60, 177–185.eng
dcterms.referencesBakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365–5377.eng
dcterms.referencesBasak, P., & Adhikari, B. (2012). Effect of the solubility of antibiotics on their release from degradable polyurethane. Materials Science and Engineering C, 32(8), 2316–2322.eng
dcterms.referencesBat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. a. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9(3), 385– 98.eng
dcterms.referencesBorrero-López, A. M., Valencia, C., & Franco, J. M. (2017). Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics. European Polymer Journal, 89, 311–323.eng
dcterms.referencesBraun, U., Lorenz, E., Weimann, C., Sturm, H., Karimov, I., Ettl, J., … Wildgruber, M. (2016). Mechanic and surface properties of central-venous port catheters after removal: a comparison of polyurethane and silicon rubber materials. Journal of the Mechanical Behavior of Biomedical Materials, 64, 281–291.eng
dcterms.referencesCakić, S. M., Ristić, I. S., Cincović, M. M., Nikolić, N. C., Nikolić, L., & Cvetinov, M. J. (2017). Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly (caprolactone) diol. Progress in Organic Coatings, 105, 111–122.eng
dcterms.referencesCarriço, C. S., Fraga, T., & Pasa, V. M. D. (2016). Production and characterization of polyurethane foams from a simple mixture of castor oil , crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal, 85, 53–61.eng
dcterms.referencesChan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., CauichRodríguez, J. V., Quintana, P., & Bartolo-P??rez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6(6), 2035–2044.eng
dcterms.referencesChashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688–695.eng
dcterms.referencesChen, H., Yu, X., Zhou, W., Peng, S., & Zhao, X. (2018). Highly toughened polylactide (PLA) by reactive blending with novel polycaprolactone-based polyurethane (PCLU) blends. Polymer Testing, 70(July), 275–280.eng
dcterms.referencesConejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406–419.eng
dcterms.referencesCorcuera, M. A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175–2184.eng
dcterms.referencesCzłonka, S., Bertino, M. F., & Strzelec, K. (2018). Rigid polyurethane foams reinforced with industrial potato protein. Polymer Testing, 68(April), 135–145.eng
dcterms.referencesDulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553– 560.eng
dcterms.referencesFerreira, P., Pereira, R., Coelho, J. F. J., Silva, A. F. M., & Gil, M. H. (2007). Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules, 40(2), 144–152.eng
dcterms.referencesGarg, B., Sandhu, V., Sood, N., Sood, A., & Malhotra, V. (2012). Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Polish Journal of Pathology, 63(3), 172–178.eng
dcterms.referencesGossart, A., Battiston, K. G., Gand, A., Pauthe, E., & Santerre, J. P. (2018). Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomaterialia, 66, 129–140.eng
dcterms.referencesGunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12(06), 301–47.eng
dcterms.referencesGurunathan, T., Mohanty, S., & Nayak, S. K. (2015). Isocyanate terminated castor oil-based polyurethane prepolymer: Synthesis and characterization. Progress in Organic Coatings, 80, 39–48.eng
dcterms.referencesHejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., & Piszczyk, Ł. (2017). The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Industrial Crops and Products, 95, 113– 125.eng
dcterms.referencesHormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102(March), 151–160.eng
dcterms.referencesHou, Z., Zhang, H., Qu, W., Xu, Z., & Han, Z. (2016). Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε -caprolactone-co- D,L -lactide), and diurethane diisocyanates with uniform hard segment: synthesis and properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(18), 947–956.eng
dcterms.referencesJutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115(November 2017), 41–48.eng
dcterms.referencesKanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652.eng
dcterms.referencesKaur, G., Mahajan, M., & Bassi, P. (2013). Derivatized Polysaccharides: preparation, characterization, and application as bioadhesive polymer for drug delivery. International Journal of Polymeric Materials, 62(9), 475–481.eng
dcterms.referencesKim, H., Kang, D.-H., Kim, M., Jiao, A., Kim, D.-H., & Suh, K.-Y. (2012). Patterning methods for polymers in cell and tissue engineering, 40(6), 1–29.eng
dcterms.referencesLaube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.eng
dcterms.referencesLiu, Y., Inoue, Y., Sakata, S., Kakinoki, S., Yamaoka, T., & Ishihara, K. (2014). Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Journal of Biomaterials Science, Polymer Edition, 25(5), 474–486.eng
dcterms.referencesMarques, D. S., Santos, J. M. C., Ferreira, P., Correia, T. R., Correia, I. J., Gil, M. H., & Baptista, C. M. S. G. (2016). Photocurable bioadhesive based on lactic acid. Materials Science and Engineering C, 58, 601–609.eng
dcterms.referencesMekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egyptian Journal of Petroleum, 26(1), 9–15.eng
dcterms.referencesMeneguelli de Souza, L. C., de Carvalho, L. P., Araújo, J. S., de Melo, E. J. T., & Machado, O. L. T. (2018). Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. International Journal of Biological Macromolecules, 113(1), 821–828.eng
dcterms.referencesMi, H. Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L. S. (2017). Postcrosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials and Design, 127(February), 106–114.eng
dcterms.referencesMorral-Ruíz, G., Melgar-Lesmes, P., García, M. L., Solans, C., & García-Celma, M. J. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461(1–2), 1–13.eng
dcterms.referencesMurray, K. A., Kennedy, J. E., McEvoy, B., Vrain, O., Ryan, D., Cowman, R., & Higginbotham, C. L. (2013). The influence of electron beam irradiation conducted in air on the thermal, chemical, structural and surface properties of medical grade polyurethane. European Polymer Journal, 49(7), 1782–1795.eng
dcterms.referencesOmonov, T. S., Kharraz, E., & Curtis, J. M. (2017). Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Industrial Crops and Products, 107(May), 378–385.eng
dcterms.referencesPark, H., Gong, M.-S., Park, J.-H., Moon, S.-I., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962–71.eng
dcterms.referencesPergal, M. V, Antic, V. V, Tovilovic, G., Nestorov, J., Vasiljevic-Radovic, D., & Djonlagic, J. (2012). In Vitro Biocompatibility Evaluation of Novel Urethane–Siloxane Co-Polymers Based on Poly(ϵ-Caprolactone)-block-Poly(Dimethylsiloxane)-block-Poly(ϵCaprolactone). Journal of Biomaterials Science, Polymer Edition, 23(13), 1629–1657.eng
dcterms.referencesQiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2013). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(εcaprolactone). Journal of Biomedical Materials Research. Part A, 101(1), 75–86.eng
dcterms.referencesRezvanain, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S. F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140.eng
dcterms.referencesSáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. (2016). Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Adv., 6(73), 69094–69102.eng
dcterms.referencesSaikia, A., & Karak, N. (2017). Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polymer Degradation and Stability, 135, 8–17.eng
dcterms.referencesShah, S. A. A., Imran, M., Lian, Q., Shehzad, F. K., Athir, N., Zhang, J., & Cheng, J. (2018). Curcumin incorporated polyurethane urea elastomers with tunable thermo-mechanical properties. Reactive and Functional Polymers, 128(May), 97–103.eng
dcterms.referencesSheikh, Z., Khan, A. S., Roohpour, N., Glogauer, M., & Rehman, I. U. (2016). Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Materials Science and Engineering C, 68, 267–275.eng
dcterms.referencesShourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947–952.eng
dcterms.referencesSimón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1–11.eng
dcterms.referencesŠpírková, M., Serkis, M., Poręba, R., Machová, L., Hodan, J., Kredatusová, J., … Zhigunov, A. (2016). Experimental study of the simulated process of degradation of polycarbonateand d,l-lactide-based polyurethane elastomers under conditions mimicking the physiological environment. Polymer Degradation and Stability, 125, 115–128. Temenoff, J. S., & Mikos, A. G. (2008). Biomaterials. (Pearson, Ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall.eng
dcterms.referencesThakur, S., & Hu, J. (2017). Polyurethane : A Shape Memory Polymer (SMP). In F. Yilmaz (Ed.), Polyurethane. InTechOpen.eng
dcterms.referencesThakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164.eng
dcterms.referencesUscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., & Valero, M. (2016). Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. Journal of Biomaterials Science, Polymer Edition, 27(18), 1860–1879.eng
dcterms.referencesUsman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.eng
dcterms.referencesValero, M. F., & Ortegón, Y. (2015). Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: synthesis, characterization, and in vitro degradation. Journal of Elastomers and Plastics, 47(4), 360–369eng
dcterms.referencesVannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159.eng
dcterms.referencesVroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307–344.eng
dcterms.referencesWolf, M. T., Dearth, C. L., Sonnenberg, S. B., Loboa, E. G., & Badylak, S. F. (2015). Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 84, 208–221.eng
dcterms.referencesWu, C.-S. (2016). Enhanced antibacterial activity, antioxidant and in vitro biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872–880.eng
dcterms.referencesWu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180(June 2017), 304–313.eng
dcterms.referencesYoshida, K., Jiang, H., Kim, M. J., Vink, J., Cremers, S., Paik, D., … Myers, K. (2014). Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS ONE, 9(11).eng
dcterms.referencesZhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91– 143.eng
dcterms.referencesAdolph, E. J., Pollins, A. C., Cardwell, N. L., Davidson, J. M., Guelcher, S. A., & Nanney, L. B. (2014). Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. Journal of Biomaterials Science. Polymer Edition, 25(17), 1973–85.eng
dcterms.referencesAlishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering C, 42, 763–73.eng
dcterms.referencesAranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Heras, Á. (2009). Functional Characterization of Chitin and Chitosan. Current Chemical Biol.,3,203–230.eng
dcterms.referencesBakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365–5377.eng
dcterms.referencesBasak, P., & Adhikari, B. (2012). Effect of the solubility of antibiotics on their release from degradable polyurethane. Materials Science and Engineering C, 32(8), 2316–2322.eng
dcterms.referencesCalvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173–185.eng
dcterms.referencesChen, R., Zhang, C., & Kessler, M. R. (2014). Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying oh numbers. Journal of Applied Polymer Science, 132(1), 1–10.eng
dcterms.referencesClauss, M., Trampuz, A., Borens, O., Bohner, M., & Ilchmann, T. (2010). Biofilm formation on bone grafts and bone graft substitutes: Comparison of different materials by a standard in vitro test and microcalorimetry. Acta Biomaterialia, 6(9), 3791–3797.eng
dcterms.referencesCoakley, D. N., Shaikh, F. M., O’Sullivan, K., Kavanagh, E. G., Grace, P. A., & McGloughlin, T. M. (2015). In vitro evaluation of acellular porcine urinary bladder extracellular matrix - A potential scaffold in tissue engineered skin. Wound Medicine, 10– 11, 9–16.eng
dcterms.referencesConejero-García, Á., Gimeno, H. R., Sáez, Y. M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., & Vallés-Lluch, A. (2017). Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). European Polymer Journal, 87, 406–419.eng
dcterms.referencesDas, B., Konwar, U., Mandal, M., & Karak, N. (2013). Sunflower oil based biodegradable hyperbranched polyurethane as a thin film material. Industrial Crops and Products, 44, 396–404.eng
dcterms.referencesGiannitelli, S. M., Basoli, F., Mozetic, P., Piva, P., Bartuli, F. N., Luciani, F., … Licoccia, S. (2015). Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 51, 329–35.eng
dcterms.referencesGogoi, S., Barua, S., & Karak, N. (2014). Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Progress in Organic Coatings, 77(9), 1418–1427.eng
dcterms.referencesGuan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85–96.eng
dcterms.referencesHan, W., Tu, M., Zeng, R., Zhao, J., & Zhou, C. (2012). Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes. Carbohydrate Polymers, 90(3), 1353–1361.eng
dcterms.referencesJing, X., Mi, H. Y., Huang, H. X., & Turng, L. S. (2016). Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. Journal of the Mechanical Behavior of Biomedical Materials, 64, 94–103.eng
dcterms.referencesKara, F., Aksoy, E. A., Yuksekdag, Z., Aksoy, S., & Hasirci, N. (2015). Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization. Applied Surface Science, 357, 1692–1702.eng
dcterms.referencesKucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science & Engineering. C, Materials for Biological Applications, 46, 166–76.eng
dcterms.referencesLaube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.eng
dcterms.referencesLi, Y., & Shimizu, H. (2007). Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromolecular Bioscience, 7, 921–928.eng
dcterms.referencesMcBane, J. E., Sharifpoor, S., Cai, K., Labow, R. S., & Santerre, J. P. (2011). Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications. Biomaterials, 32(26), 6034–44.eng
dcterms.referencesOrtuno-Lizarán, I., Vilarino-Feltrer, G., Martinez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 1–12.eng
dcterms.referencesPark, H., Gong, M.-S., Park, J.-H., Moon, S.-I., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962–71.eng
dcterms.referencesRajan, K. P., Al-ghamdi, A., Parameswar, R., & Nando, G. B. (2013). Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes. International Journal of Biomaterials, 1–7.eng
dcterms.referencesReddy, T. T., Kano, A., Maruyama, A., & Takahara, A. (2010). Synthesis, characterization and drug release of biocompatible/biodegradable non-toxic poly(urethane urea)s based on poly(epsilon-caprolactone)s and lysine-based diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(November 2014), 1483–1502.eng
dcterms.referencesRezvanain, M., Ahmad, N., Mohd Amin, M. C. I., & Ng, S. F. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140.eng
dcterms.referencesRocco, K. a, Maxfield, M. W., Best, C. a, Dean, E. W., & Breuer, C. K. (2014). In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Engineering. Part B, 20(6), 628–640.eng
dcterms.referencesRodríguez-Galán, A., Franco, L., & Puiggal, J. (2011). Biodegradable polyurethanes and poly(ester amide)s. In A. Lendlein & A. Sisson (Eds.), Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications (First, pp. 133–154).eng
dcterms.referencesShahrousvand, M., Sadeghi, G. M. M., Shahrousvand, E., Ghollasi, M., & Salimi, A. (2017). Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids and Surfaces B: Biointerfaces, 156, 292–304.eng
dcterms.referencesSpontón, M., Casis, N., Mazo, P., Raud, B., Simonetta, A., Ríos, L., & Estenoz, D. (2013). Biodegradation study by Pseudomonas sp . of flexible polyurethane foams derived from castor oil. International Biodeterioration & Biodegradation, 85, 85–94.eng
dcterms.referencesSt John, K. R. (2014). The use of compliant layer prosthetic components in orthopedic joint repair and replacement: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1332–41.eng
dcterms.referencesThakur, S., & Karak, N. (2013). Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Progress in Organic Coatings, 76(1), 157–164.eng
dcterms.referencesTijing, L. D., Ruelo, M. T. G., Amarjargal, A., Pant, H. R., Park, C. H., & Kim, C. S. (2012). One-step fabrication of antibacterial (silver nanoparticles/poly(ethylene oxide)) - Polyurethane bicomponent hybrid nanofibrous mat by dual-spinneret electrospinning. Materials Chemistry and Physics, 134(2–3), 557–561.eng
dcterms.referencesTsai, M.-C., Hung, K.-C., Hung, S.-C., & Hsu, S. (2015). Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces. B: Biointerfaces, 125, 34–44.eng
dcterms.referencesUsman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630–645.eng
dcterms.referencesvan Minnen, B., Stegenga, B., van Leeuwen, M. B. M., van Kooten, T. G., & Bos, R. R. M. (2006). A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products. Journal of Biomed. Materials Research. Part A, 76(2), 377–85.eng
dcterms.referencesVannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159.eng
dcterms.referencesVilariño Feltrer, G., Martínez Ramos, C., Monleon De La Fuente, A., Vallés Lluch, A., Moratal Pérez, D., Barcia Albacar, J., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199–211.eng
dcterms.referencesWang, W., Guo, Y., & Otaigbe, J. (2008). Synthesis and characterization of novel biodegradable and biocompatible poly (ester-urethane) thin films prepared by homogeneous solution polymerization. Polymer, 49, 4393–4398.eng
dcterms.referencesWang, Y., Yu, Y., Zhang, L., Qin, P., & Wang, P. (2015). One-step surface modification of polyurethane using affinity binding peptides for enhanced fouling resistance. Journal of Biomaterials Science, Polymer Edition, 26(8), 459–467.eng
dcterms.referencesWu, C.-S. (2016). Enhanced antibacterial activity, antioxidant and in vitro biocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872–880.eng
dcterms.referencesZhou, L., Liang, D., He, X., Li, J., Tan, H., Li, J., … Gu, Q. (2012). The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery. Biomaterials, 33(9), 2734–2745.eng
dcterms.referencesBallerini, P., Diomede, F., Petragnani, N., Cicchitti, S., Merciaro, I., Cavalcanti, M. F. X. B., & Trubiani, O. (2017). Conditioned medium from relapsing-remitting multiple sclerosis patients reduces the expression and release of inflammatory cytokines induced by LPSgingivalis in THP-1 and MO3.13 cell lines. Cytokine, 96(December 2016), 261–272.eng
dcterms.referencesChanput, W., Mes, J., Vreeburg, R. A. M., Savelkoul, H. F. J., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: A tool to study inflammation modulating effects of food-derived compounds. Food and Function, 1(3), 254–261.eng
dcterms.referencesDash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., … Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose- dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126–139.eng
dcterms.referencesDreskin, S. C., Thomas, G. W., Dale, S. N., & Heasley, L. E. (2001). Isoforms of Jun Kinase Are Differentially Expressed and Activated in Human Monocyte/Macrophage (THP-1) Cells. The Journal of Immunology, 166(9), 5646–5653.eng
dcterms.referencesLin, T. H., Yao, Z., Sato, T., Keeney, M., Li, C., Pajarinen, J., … Goodman, S. B. (2014). Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomaterialia, 10(8), 3747–3755.eng
dcterms.referencesLund, M. E., To, J., O’Brien, B. A., & Donnelly, S. (2016). The choice of phorbol 12- myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 430, 64–70.eng
dcterms.referencesPark, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., & Kim, K. S. (2007). Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflammation Research, 56, 45–50.eng
dcterms.referencesSmall, A., Lansdown, N., Al-Baghdadi, M., Quach, A., & Ferrante, A. (2018). Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. Journal of Immunological Methods, (May), 0–1.eng
dcterms.referencesStarr, T., Bauler, T. J., Malik-Kale, P., & Steele-Mortimer, O. (2018). The phorbol 12- myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE, 13(3), 1–13.eng
dcterms.referencesAngeloni, V., Contessi, N., De Marco, C., Bertoldi, S., Tanzi, M. C., Daidone, M. G., & Farè, S. (2017). Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomaterialia, 63, 306–316.eng
dcterms.referencesGabriel, L. P., Santos, M. E. M. do., Jardini, A. L., Bastos, G. N. T., Dias, C. G. B. T., Webster, T. J., & Maciel Filho, R. (2017). Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine: Nanotechnology, Biology, and Medicine, 13(1), 201–208.eng
dcterms.referencesGarg, B., Sandhu, V., Sood, N., Sood, A., & Malhotra, V. (2012). Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Polish Journal of Pathology, 63(3), 172–178.eng
dcterms.referencesGibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for Valid Histopathologic Scoring in Research. Veterinary Pathology, 50(6), 1007–1015.eng
dcterms.referencesGossart, A., Battiston, K. G., Gand, A., Pauthe, E., & Santerre, J. P. (2018). Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomaterialia, 66, 129–140.eng
dcterms.referencesInzana, J. A., Schwarz, E. M., Kates, S. L., & Awad, H. A. (2016). Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials, 81, 58–71.eng
dcterms.referencesLaube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering C, 78, 163–174.eng
dcterms.referencesMeskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M. C., Imani, R., … Farè, S. (2018). Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering C, 82(August 2017), 130–140.eng
dcterms.referencesNg, W. S., Lee, C. S., Chuah, C. H., & Cheng, S. F. (2017). Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Industrial Crops and Products, 97, 65–78.eng
dcterms.referencesVannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75(July), 147–159.eng
dcterms.referencesZhang, J., Woodruff, T. M., Clark, R. J., Martin, D. J., & Minchin, R. F. (2016). Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomaterialia, 41, 264–272.eng
dcterms.referencesCaracciolo, P. C., & Abraham, G. A. (2015). Poliuretanos biomédicos: síntesis, propiedaes, procesamiento y aplicaciones. In H. Sousa, M. Braga, & A. Sosnik (Eds.), Biomateriales aplicados al diseño de sistemas terapéuticos avanzados (pp. 147–181). Universidad de Coimbra.es_CO
dcterms.referencesValero-Valdivieso, M., Ortegon, Y., & Uscategui, Y. (2013). Biopolímeros: avances y perspectivas. Dyna, 80(181), 171–180. Retrieved fromes_CO
dcterms.referencesFuentes, L. E., Pérez, S., Martínez, S. I., & García, Á. R. (2011). Redes poliméricas interpenetradas de poliuretano a partir de aceite de ricino modificado y poliestireno: miscibilidad y propiedades mecánicas en función de la composición. Revisata Ion, 24(2), 45–50.es_CO
dcterms.referencesValero, M. F., & Díaz, L. E. (2014). Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: síntesis, propiedades mecánicas y térmicas y degradación in vitro. Quimica Nova, 37(9), 1441–1445.es_CO
dcterms.referencesValero, M. F., Pulido, J. E., Ramírez, Á., & Cheng, Z. (2009). Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros, 19(1), 14–21.es_CO
dcterms.referencesEstrada, A., & Herrera, J. (2013). Síntesis de materiales a base de uretano reforzados con nanopartículas metálicas. I. Síntesis y caracterización. Revista Iberoamericana de Polímeros, 14(1), 28–38. Retrieved fromes_CO
dcterms.referencesLarraza, Í. (2012). Desarrollo de nuevas estrategias para la preparación de nanocomposites con propriedades antimicrobianas. Universidad Autónoma de Madrid.es_CO
dcterms.referencesRodríguez, A., & Rodríguez, Y. (2015). Biodegradación depoliuretao mediante el uso del hongo Pestalotiopsis microspora. Barrancabermeja, Santander-Colombia.es_CO
dcterms.referencesGómez Estrada, H. A., González Ruiz, K. N., & Medina, J. D. (2011). Actividad antiinflamatoria de productos naturales. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 10(3), 182–217.es_CO
dcterms.referencesGonzález, R., Zamora, Z., & Alonso, Y. (2009). Citocinas anti-inflamatorias y sus acciones y efectos en la sepsis y el choque séptico. REDVET. Revista Electrónica de Veterinaria, 10(9), 1–11.es_CO
dcterms.referencesOliveira, C. M., Sakata, R. K., Issy, A. M., & Gerola, L. R. (2011). Citocinas y dolor. Revista Brasileira de Anestesiología, 61(2), 137–142.es_CO
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International