Mostrar el registro sencillo del ítem

dc.contributor.advisorCáez Ramírez, Gabriela Rabe
dc.contributor.authorCarulla Falla, Juan Manuel
dc.date.accessioned2013-12-17T19:16:23Z
dc.date.available2013-12-17T19:16:23Z
dc.date.created2013
dc.date.issued2013-12-17
dc.identifier.citationAli, Z. M., & Brady, C. J. (1982). Purification and characterization of the polygalacturonases of tomato fruits. Functional Plant Biology, 9(2), 155-169.
dc.identifier.citationAli, Z. M., Chin, L.-H., & Lazan, H. (2004). A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Science, 167(2), 317-327.
dc.identifier.citationAlkorta, I., Garbisu, C., Llama, M. J., & Serra, J. L. (1998). Industrial applications of pectic enzymes: a review. Process Biochemistry, 33(1), 21-28.
dc.identifier.citationAlonso Esquivel, M., Tornet, Y., Aranguren, M., Ramos, R., Rodríguez, K., & Pastor, M. C. R. (2008). Caracterización de los frutos de cuatro cultivares de papaya del grupo solo, introducidos en Cuba. Agronomía costarricense, 32(2), 169.
dc.identifier.citationAlonso Esquivel, M., Tornet, Y., Ramos, R., Farrés, E., & Rodríguez, D. (2009). Evaluación de dos híbridos de papaya introducidos en Cuba. Agronomía costarricense: Revista de ciencias agrícolas, 33(2), 267-274.
dc.identifier.citationAmnuaysin, N., Jones, M. L., & Seraypheap, K. (2012). Changes in activities and gene expression of enzymes associated with cell wall modification in peels of hot water treated bananas. Scientia Horticulturae, 142, 98-104.
dc.identifier.citationArango, L., Román, C., Salamanca, C., Almansa, E., Bernal, R., León, G., Valenzuela, V., Ariza, M., & Bilbao, P. (2000). El cultivo de la papaya en los Llanos Orientales de Colombia. Corpoica. Manual de asistencia técnica. Villavicencio, Colombia.
dc.identifier.citationArenas-Ocampo, M., Alamilla-Beltrán, L., Vanegas-Espinoza, P. E., Camacho-Díaz, B. H., Campos-Mendiola, R., Gutiérrez-López, G., & Jiménez-Aparicio, A. (2012). Fractal morphology of Beta vulgaris L. cell suspension culture permeabilized with Triton X100®. International Agrophysics, 26(1), 1-6.
dc.identifier.citationArmstrong, F. B., & Bennett, T. P. (1982). Bioquímica: Reverté.
dc.identifier.citationAsif, M. H., & Nath, P. (2005). Expression of multiple forms of polygalacturonase gene during ripening in banana fruit. Plant Physiology and Biochemistry, 43(2), 177-184.
dc.identifier.citationAtkinson, R. G., Sutherland, P. W., Johnston, S. L., Gunaseelan, K., Hallett, I. C., Mitra, D., Brummell, D. A., Schroder, R., Johnston, J. W., & Schaffer, R. J. (2012). Down-regulation of POLYGALACTURONASE 1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biology, 12(1), 129.
dc.identifier.citationBach, E., & Schollmeyer, E. (1992). An ultraviolet-spectrophotometric method with 2cyanoacetamide for the determination of the enzymatic degradation of reducing polysaccharides. Analytical Biochemistry, 203(2), 335-339.
dc.identifier.citationBhande , S. D., Ravindra , M. R., & Goswami, T. K. (2008). Respiration rate of banana fruit under aerobic conditions at different storage temperatures. Journal of Food Engineering, 87, 116-123.
dc.identifier.citationBouzayen, M., Latché, A., Nath, P., & Pech, J. (2010). Mechanism of Fruit Ripening. Plant Developmental Biology-Biotechnological Perspectives, 319-339.
dc.identifier.citationBrummel, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. plant molecular biology, 311-340.
dc.identifier.citationBrummell, D. A., Dal Cin, V., Crisosto, C. H., & Labavitch, J. M. (2004). Cell wall metabolism during maturation, ripening and senescence of peach fruit. Journal of Experimental Botany, 55(405), 2029-2039.
dc.identifier.citationBrummell, D. A., Harpster, M. H., Civello, P. M., Palys, J. M., Bennett, A. B., & Dunsmuir, P. (1999). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. The Plant Cell Online, 11(11), 22032216
dc.identifier.citationCarmona, M. R., Aguilera, M., Pérez, C. A., & Serey, I. (2006). Actividad respiratoria en el horizonte orgánico de suelos de ecosistemas forestales del centro y sur de Chile. Gayana Bot, 63, 1.
dc.identifier.citationCarpita, N. C. (1987). The biochemistry of growing cell walls. In Physiology of Cell Expansion During Plant Growth (Cosgrove, D.J. and Knievel, D.P., eds.) Rockville, M.D.: Am. Soc. Plant Physiol.
dc.identifier.citationCarpita, N. C., & Gibeaut, D. M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30.
dc.identifier.citationCasas-Forero, N., & Cáez-Rámirez, G. (2011). Morfometric and quality changes by application of three calcium sources under mild termal treatment in pre-cut fresh melon (Cucumis melo L.). Cambios morfometricos y de calidad por aplicación de tres fuentes de calcio bajo tratamiento térmico suave en melón (Cucumis melo L.) fresco precortado, 10(3), 431-444.
dc.identifier.citationChan Jr, H. T., & Tam, S. Y. T. (1982). Partial Separation and Characterization of Papaya Edo‐ad Eo‐Polgalaturoase. Journal of Food Science, 47(5), 1478-1483.
dc.identifier.citationChassagne-Berces, S., Poirier, C., Devaux, M.-F., Fonseca, F., Lahaye, M., Pigorini, G., Girault, C., Marin, M., & Guillon, F. (2009). Changes in texture, cellular structure and cell wall composition in apple tissue as a result of freezing. Food Research International, 42(7), 788-797.
dc.identifier.citationChivasa, S., Ndimba, B. K., Simon, W. J., Robertson, D., Yu, X. L., Knox, J. P., Bolwell, P., & Slabas, A. R. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis, 23(11), 1754-1765.
dc.identifier.citationde Assis Zampirolli, F., Stransky, B., Lorena, A. C., & de Melo Paulon, F. L. (2010). Segmentation and classification of histological images-application of graph analysis and machine learning methods. In Graphics, Patterns and Images (SIBGRAPI), 2010 23rd SIBGRAPI Conference on, (pp. 331-338): IEEE.
dc.identifier.citationde Oliveira, J. G., & Vitória, A. P. (2011). Papaya: Nutritional and pharmacological characterization, and quality loss due to physiological disorders. An overview. Food Research International, 44(5), 1306-1313.
dc.identifier.citationDowd, J. E., & Riggs, D. S. (1965). A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. biol. Chem, 240(2), 863-869.
dc.identifier.citationEgelund, J., Skjøt, M., Geshi, N., Ulvskov, P., & Petersen, B. L. (2004). A complementary bioinformatics approach to identify potential plant cell wall glycosyltransferaseencoding genes. Plant physiology, 136(1), 2609-2620.
dc.identifier.citationElMasry, G., Wang, N., ElSayed, A., & Ngadi, M. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 81(1), 98-107.
dc.identifier.citationFabi, J. P., Cordenunsi, B. R., Seymour, G. B., Lajolo, F. M., & do Nascimento, J. R. O. (2009). Molecular cloning and characterization of a ripening-induced polygalacturonase related to papaya fruit softening. Plant Physiology and Biochemistry, 47(11-12), 10751081.
dc.identifier.citationFabi, J. P., Lajolo, F. M., & Nascimento, J. R. O. d. (2009). Cloning and characterization of transcripts differentially expressed in the pulp of ripening papaya. Scientia Horticulturae, 121(2), 159-165.
dc.identifier.citationFabi, J. P., Mendes, L. R. B. C., Lajolo, F. M., & do Nascimento, J. R. O. (2010). Transcript profiling of papaya fruit reveals differentially expressed genes associated with fruit ripening. Plant Science, 179(3), 225-233.
dc.identifier.citationFacco, P., Masiero, A., Bezzo, F., Barolo, M., & Beghi, A. (2011). Improved multivariate image analysis for product quality monitoring. Chemometrics and Intelligent Laboratory Systems.
dc.identifier.citationFAO. (2002). El Cultivo protegido en clima mediterráneo: Organización de las Naciones Unidas para la Agricultura y la Alimentación
dc.identifier.citationFernandez, L., Castillero, C., & Aguilera, J. (2005). An application of image analysis to dehydration of apple discs. Journal of Food Engineering, 67(1-2), 185-193.
dc.identifier.citationFischer, C. (2009). Opportunities for Innovation in Fruit & Vegetable Retailing: A Value Chain Approach. In M. University (Ed.), 19th Annual World Forum and Symposium, (pp. 1- 22). Budapest, Hungary: IAMA.
dc.identifier.citationFlanzy, C. (2002). Enología: Fundamentos científicos y tecnológicos: AMV Ediciones.
dc.identifier.citationFry, S. C. (1988). The growing plant cell wall: chemical and metabolic analysis: Longman Scientific & Technical.
dc.identifier.citationFuggate, P., Wongs-Aree, C., Noichinda, S., & Kanlayanarat, S. (2010). Quality and volatile attriďutes of attaĐhed aŶd detaĐhed ͚Pluk Mai Lie͛ papaLJa duriŶg fruit ripeŶiŶg. Scientia Horticulturae, 126(2), 120-129
dc.identifier.citationGarcía, A. R., Balbín, M. I., Cabrera, J. C., & Castelvi, A. (2002). Actividad endopoligalacturonasa de un preparado de la levadura Kluyveromices marxianus aislada de la pulpa del café. Cultivos Tropicales, 23(1), 67-72.
dc.identifier.citationGil, A. I., & Miranda, D. (2005). Morfología de la flor y de la semilla de papaya (Carica papaya L.): variedad Maradol e híbrido Tainung-1. Agronomía Colombiana, 23(2), 217-222.
dc.identifier.citationGleason, F., & Chollet, R. (2011). Plant Biochemistry: Jones & Bartlett Learning.
dc.identifier.citationGoulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends in Food Science & Technology, 19(1), 4-25.
dc.identifier.citationGross, K. C. (1982). A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. HortScience, 17, 933-934.
dc.identifier.citationHadfield, K. A., & Bennett, A. B. (1998). Polygalacturonases: many genes in search of a function. Plant Physiology, 117(2), 337-343.
dc.identifier.citationHadfield, K. A., Rose, J. K. C., Yaver, D. S., Berka, R. M., & Bennett, A. B. (1998). Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiology, 117(2), 363-373.
dc.identifier.citationHITM, H. I. o. T. a. M. (2006). Food HACCP Processes. In 4-food-HACCP-4-06). Minneapolis, USA.
dc.identifier.citationHobson, G. E. (1965). The firmness of tomato fruit in relation to polygalacturonase activity. J. Hort. Sci, 40, 66-72
dc.identifier.citationHodges, M., & Toivonen, P. (2008). Quality of fresh-cut fruits and vegetables as affected by abiotic stress. Postharvest Biology and Technology, 48, 155-162.
dc.identifier.citationICONTEC. (1993). Industria alimentaria: papaya. In ICONTEC (Ed.), NTC, vol. 1270). Bogotá D.C: ICONTEC.
dc.identifier.citationJahns, G., Møller Nielsen, H., & Paul, W. (2001). Measuring image analysis attributes and modelling fuzzy consumer aspects for tomato quality grading. Computers and Electronics in Agriculture, 31(1), 17-29.
dc.identifier.citationKarakurt, Y., & Huber, D. J. (2003). Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during lowtemperature storage of intact and fresh-cut papaya (Carica papaya) fruit. Postharvest Biology and Technology, 28(2), 219-229.
dc.identifier.citationLazan, H., Selamat, M. K., & Ali, Z. M. (1995). β-Galactosidase, polygalacturonase and pectinesterase in differential softening and cell wall modification during papaya fruit ripening. Physiologia Plantarum, 95(1), 106-112.
dc.identifier.citationLee, K. J. D., Marcus, S. E., & Knox, J. P. (2011). Cell wall biology: perspectives from cell wall imaging. Molecular plant, 4(2), 212-219.
dc.identifier.citationLewicki, P. P., & Porzecka-Pawlak, R. (2005). Effect of osmotic dewatering on apple tissue structure. Journal of Food Engineering, 66(1), 43-50.
dc.identifier.citationLleó, L., Barreiro, P., Ruiz-Altisent, M., & Herrero, A. (2009). Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229- 235.
dc.identifier.citationLohani, S., Trivedi, P. K., & Nath, P. (2004). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 31(2), 119-126.
dc.identifier.citationLu, R. (2007). Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images. Sensing and Instrumentation for Food Quality and Safety, 1(1), 19-27.
dc.identifier.citationLu, R. (2008). Quality evaluation of fruits by hyperspectral imaging. In Computer vision technology for food quality evaluation, (pp. 319-348). Burlington, MA: Elsevier.
dc.identifier.citationLópez-García, F., Andreu-García, G., Blasco, J., Aleixos, N., & Valiente, J.-M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71(2), 189-197.
dc.identifier.citationMarin, S. L. D., Pereira, M. G., Amaral Júnior, A. T., Martelleto, L. A., & Ide, C. D. (2006). Heterosis in papaya hybrids from partial diallel of Solo and Formosa parents. Crop Breeding and Applied Biotechnology, 6(1), 24-29.
dc.identifier.citationMartinez-Garcia, M., Brazel, D., Poulton, N. J., Swan, B. K., Gomez, M. L., Masland, D., Sieracki, M. E., & Stepanauskas, R. (2011). Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. The ISME Journal.
dc.identifier.citationMaríŶ‐‘odríguez, M. C., OrĐhard, J., & Seymour, G. B. (2002). Pectate lyases, cell wall degradation and fruit softening. Journal of Experimental Botany, 53(377), 2115
dc.identifier.citationMayor, L., Pissarra, J., & Sereno, A. M. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326- 339.
dc.identifier.citationMorales, M. C., & Box, J. M. M. (2005). Prontuario de Agricultura: Ministerio de Agricultura, Pesca y Alimentación, Secretaría General Técnica.
dc.identifier.citationMoreda , G. P., Ortiz-Cañavate, J., García-Ramos, F. J., & Ruiz-Altisen, M. (2009). Nondestructive technologies for fruit and vegetable size determination – a review. Journal of Food Engineering, 92, 119–136.
dc.identifier.citationMuchuweti, M., Moyo, E., & Mushipe, S. (2005). Some properties of the polygalacturonase from four Zimbabwean wild fruits (Uapaca kirkiana, Zizphus mauritiana, Tamarindus indica and Berchemia discolor fruits). Food Chemistry, 90(4), 655-661.
dc.identifier.citationNogueira, S. B., Labate, C. A., Gozzo, F. C., Pilau, E. J., Lajolo, F. M., & Oliveira do Nascimento, J. R. (2012). Proteomic analysis of papaya fruit ripening using 2DE-DIGE. Journal of Proteomics, 75(4), 1428-1439.
dc.identifier.citationO'CoŶŶor‐Shaw, ‘. E., ‘oďerts, ‘., Ford, A. L., & NottiŶghaŵ, S. M. ;2006Ϳ. Shelf life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science, 59(6), 1202-1206.
dc.identifier.citationOey, M. L., Vanstreels, E., De Baerdemaeker, J., Tijskens, E., Ramon, H., Hertog, M. L. A. T. M., & Nicolaï, B. (2007). Effect of turgor on micromechanical and structural properties of apple tissue: A quantitative analysis. Postharvest Biology and Technology, 44(3), 240- 247
dc.identifier.citationOrdaz-Ortiz, J. J., Marcus, S. E., & Knox, J. P. (2009). Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Molecular plant, 2(5), 910-921
dc.identifier.citationPathak, N., Mishra, S., & Sanwal, G. G. (2000). Purification and characterization of polygalacturonase from banana fruit. Phytochemistry, 54(2), 147-152
dc.identifier.citationPaull, R. E., & Chen, N. J. (1983). Postharvest variation in cell wall-degrading enzymes of papaya (Carica papaya L.) during fruit ripening. Plant physiology, 72(2), 382-385.
dc.identifier.citationPaull, R. E., Gross, K., & Qiu, Y. (1999). Changes in papaya cell walls during fruit ripening. Postharvest Biology and Technology, 16(1), 79-89
dc.identifier.citationPayasi, A., Mishra, N., Chaves, A., & Singh, R. (2009). Biochemistry of fruit softening: an overview. Physiology and Molecular Biology of Plants, 15(2), 103-113.
dc.identifier.citationPelloux, J., Rustérucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in plant science, 12(6), 267-277.
dc.identifier.citationPeng, Y., & Lu, R. (2007). Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. Journal of food engineering, 82(2), 142-152
dc.identifier.citationPires, T. d. C. R., & Finardi-Filho, F. (2005). Extraction and assay of pectic enzymes from Peruvian carrot (Arracacia xanthorriza Bancroft.). Food Chemistry, 89(1), 85-92.
dc.identifier.citationPrasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an overview. Critical reviews in food science and nutrition, 47(1), 1-19.
dc.identifier.citationQing, Z., Ji, B., & Zude, M. (2007). Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. Journal of Food Engineering, 82(1), 58-67.
dc.identifier.citationRamos, I. N., Silva, C. L. M., Sereno, A. M., & Aguilera, J. M. (2004). Quantification of microstructural changes during first stage air drying of grape tissue. Journal of Food Engineering, 62(2), 159-164
dc.identifier.citationRedgwell, R. J., Fischer, M., Kendal, E., & MacRae, E. A. (1997). Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls. Planta, 203(2), 174-181.
dc.identifier.citationReyes, R. T., Mesa, J. C. T., Reyes, C. E., Negrette, R. G., & Muñoz, C. A. (2006). Plan Frutícola Nacional, Valle del Cauca, tierra de frutas. Santiago de Cali: Ministerio de Agricultura y Desarrollo Rural-MADR Gobernación del Valle del Cauca Fondo Nacional de Fomento Hortofrutícola - FNFH Asociación Hortofrutícola de Colombia-Asohofrucol Sociedad de Agricultores y Ganaderos del Valle del Cauca - SAG.
dc.identifier.citationRiquelme, M. T., Barreiro, P., Ruiz-Altisent, M., & Valero, C. (2008). Olive classification according to external damage using image analysis. Journal of Food Engineering, 87(3), 371-379.
dc.identifier.citationRiyadi, S., Mustafa, M. M., Hussain, A., & Hamzah, A. (2007). Papaya fruit grading based on size using image analysis. In, (pp. 645-648).
dc.identifier.citationRodriguez Castro, J. P., Narvaez Cuenca, C. E., & Restrepo Sanchez, L. P. (2006). Estudio de la actividad enzimatica de poligalacturonasaen la corteza de pitaya amarilla (Acanthocereus pitajaya); Polygalacturonase Activity in Yellow Pitaya Peel (Acanthocereus pitajaya). Acta biol. colomb, 11(supl, 1), 65-74
dc.identifier.citationRose, J. K. C., Hadfield, K. A., Labavitch, J. M., & Bennett, A. B. (1998). Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiology, 117(2), 345.
dc.identifier.citationRuggiero, C., Marin, S. L. D., & Durigan, J. F. (2011). Mamão, uma história de sucesso. Revista Brasileira de Fruticultura, 33(SPE1), 76-82.
dc.identifier.citationSadrnia, H., Rajabipour, A., Jafary, A., Javadi, A., & Mostofi, Y. (2007). Classification and analysis of fruit shapes in long type watermelon using image processing. Int. J. Agric. Biol, 1, 68- 70.
dc.identifier.citationSantana, C., Camilo, J., López, P., & Alberto, L. (2001). Hipótesis y sumas de cuadrados tipo III y IV un enfoque a través del modelo de medias de celda. Revista colombiana de estadística, 24(2), 91.
dc.identifier.citationSañudo Barajas, J. A., Siller Cepeda, J., Osuna Enciso, T., Muy Rangel, D., López Álvarez, G., Osuna Castro, J. A., Greve, C., & Labavitch, J. (2008). Solubilización y despolimerización de pectinas durante el ablandamiento de frutos de papaya. Revista Fitotecnia Mexicana, 31(2), 149-155.
dc.identifier.citationSeymour, G. B., Colquhoun, I. J., Dupont, M. S., & Parsley, K. R. (1990). Composition and structural features of cell wall polysaccharides from tomato fruits. Phytochemistry, 29(3), 725-731.
dc.identifier.citationThumdee, S., Manenoi, A., Chen, N. J., & Paull, R. E. (2010). Papaya fruit softening: role of hydrolases. Tropical Plant Biology, 3(2), 98-109
dc.identifier.citationTorres, R., Montes, E. J., Pérez, O. A., & Andrade, R. D. (2012). Influencia del Estado de Madurez sobre las Propiedades Viscoelásticas de Frutas Tropicales (Mango, Papaya y Plátano). Información tecnológica, 23(5), 115-124
dc.identifier.citationTrejo Araya, X. I., Hendrickx, M., Verlinden, B. E., Van Buggenhout, S., Smale, N. J., Stewart, C., & John Mawson, A. (2007). Understanding texture changes of high pressure processed fresh carrots: A microstructural and biochemical approach. Journal of food engineering, 80(3), 873-884
dc.identifier.citationUSDA. (2013). Best practices handling fresh produce in schools. In USDA (Ed.), National Food Service Management Institute, vol. 2013). Mississippi, USA
dc.identifier.citationVan Buggenhout, S., Sila, D., Duvetter, T., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruits and vegetables: part III—texture engineering. Comprehensive Reviews in Food Science and Food Safety, 8(2), 105-117
dc.identifier.citationVasu, P., Savary, B. J., & Cameron, R. G. (2012). Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation. Food Chemistry, 133(2), 366-372.
dc.identifier.citationVesali, F., Gharibkhani, M., & Komarizadeh, M. H. (2011). An approach to estimate moisture content of apple with image processing method. Australian Journal of Crop Science, 5(2), 111
dc.identifier.citationVillarreal, N. M., Rosli, H. G., Martínez, G. A., & Civello, P. M. (2008). Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit firmness. Postharvest Biology and Technology, 47(2), 141-150
dc.identifier.citationVoet, D., Voet, J. G., & Pratt, C. W. (2007). Fundamentos de bioquímica: la vida a nivel molecular: Médica Panamericana.
dc.identifier.citationWilkinson, G. N. (1961). Statistical estimations in enzyme kinetics. Biochemical Journal, 80(2), 324.
dc.identifier.citationWolf, S., Mouille, G., & Pelloux, J. (2009). Homogalacturonan methyl-esterification and plant development. Molecular plant, 2(5), 851-860
dc.identifier.citationYang, M., Kpalma, K., & Ronsin, J. (2008). A survey of shape feature extraction techniques. Pattern Recognition, 43-90.
dc.identifier.citationZheng, C., Sun, D. W., & Zheng, L. (2006). Recent developments and applications of image features for food quality evaluation and inspection-a review. Trends in food science & technology, 17(12), 642-655
dc.identifier.urihttp://hdl.handle.net/10818/9477
dc.description103 páginas
dc.description.abstractLa papaya es una fruta de alta producción y exportación en Colombia, su comercialización se debe al aporte en nutrientes. Sin embargo, su mayor problema de calidad se relaciona con el ablandamiento y la actividad de Poligalacturonasa. Se planteó determinar una posible relación entre los cambios en la actividad enzimática de la Poligalacturonasa, la expresión molecular semicuantitativa de la enzima y los atributos morfoestructurales de las células de papaya como indicadores del avance de la senescencia. Se encontró una relación lineal de expresión génica con actividad enzimática durante el avance de la senescencia. Igualmente se encontró una relación lineal entre factores de tamaño e irregularidad celular con la actividad enzimática y se calculó un modelo aproximativo que describe ese comportamiento. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/9478es_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabana
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectPapaya (Cocina) -- Composición
dc.subjectPapaya -- Nutrición
dc.subjectFrutas -- Composición
dc.subjectFrutas -- Anatomía
dc.titleActividad de la poligalacturonasa y atributos morfoestructurales como indicadores del avance de la senescencia de la papaya (Carica papaya l.) fresca precortada.es_CO
dc.typemasterThesis
dc.publisher.programMaestría en Diseño y Gestión de Procesos
dc.publisher.departmentFacultad de Ingeniería
dc.identifier.local255600
dc.identifier.localTE06011
dc.type.localTesis de maestría
dc.type.hasVersionpublishedVersion
dc.rights.accessRightsopenAccess
dc.creator.degreeMagíster en Diseño y Gestión de Procesos


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem