Desarrollo de un modelo de red neuronal artificial para la reducción de escala (downscaling) de datos de temperatura del modelo Climático Global Canadiense 3.1 a estaciones meteorológicas colombianas
View/ Open
Item Links
URI: http://hdl.handle.net/10818/9320Compartir
Statistics
View Usage StatisticsMetrics
Bibliographic cataloging
Show full item recordAuthor
Cardozo Vásquez, AndrésDate
2012Abstract
Se desarrolló un modelo basado en redes neuronales artificiales (RNA) para el pronóstico de la temperatura media diaria a escala local en 5 zonas climáticas de Colombia. Se probaron perceptrones multicapa (MLP), redes recurrentes (RN), Generalized Feedforward (GFF), Time Lagged Recurrent Networks (TLRN), Time Delayed Neural Networks (TDNN) y Radial Basis Function (RBF). Se encontraron modelos RNA que superaron métodos lineales y que simularon mejor los datos de anomalías de la temperatura media diaria que el reanálisis NCEP/NCAR. Posteriormente se hizo una proyección de la temperatura media diaria en el periodo del 1 de enero de 2001 al 31 de diciembre de 2100 bajo los escenarios A2 y A1B descritos por el Panel Intergubernamental sobre el Cambio Climático. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://hdl.handle.net/10818/9321