Obtención de nanoestructuras de celulosa por electrospinning a partir del papel tissue no conforme
Enlaces del Item
URI: http://hdl.handle.net/10818/49528Compartir
Estadísticas
Ver Estadísticas de usoMétricas
Catalogación bibliográfica
Mostrar el registro completo del ítemAutor/es
Jaimes Bello, Luis GiovannyFecha
2021-08-08Resumen
La celulosa es la biomolécula orgánica más abundante en el planeta. Este biopolí- mero compuesto por largas cadenas de 𝜷−𝒈𝒍𝒖𝒄𝒐𝒔𝒂 hace parte fundamental de los procesos productivos de la industria del papel, ya que mediante su transformación desde fibra virgen o reciclada se obtiene una amplia variedad de productos del mer- cado conocidos como papel tissue: papel higiénico, toallas, servilletas, pañuelos fa- ciales, entre otros. Una empresa local de la zona dedicada a la fabricación de estos productos durante los últimos años ha presentado un significativo rechazo diario de papel tissue (alrededor de 2 toneladas) debido a condiciones fuera de especifica- ciones o de proceso. En consecuencia, se obtienen grandes cantidades de papel sin otro destino que ser reintegrado al proceso como materia prima. Si se tiene en cuenta que este material de rechazo actualmente es usado como componente fibroso, y que su costo oscila entre 2 y 5 veces el de la materia prima tradicional, nace la necesidad de evaluar nuevas formas de aprovechamiento para este rechazo con alto contenido de celulosa, en búsqueda de materiales con importantes propiedades fisicoquímicas y mecánicas, que puedan ser usados en aplicaciones de mayor valor para la compañía. Cellulose is the most abundant organic biomolecule on the planet. This biopolymer
composed of long chains of 𝜷 − 𝒈𝒍𝒖𝒄𝒐𝒔𝒂 is a fundamental part of the production
processes of the paper industry, since through its transformation from virgin or
recycled fiber, a wide variety of market products known as tissue paper is obtained:
toilet paper, towels, napkins, facial tissues, among others. A local company in the
area dedicated to the manufacture of these products presents a significant daily re jection of tissue paper (around 2 tons) due to out of specification or process condi tions. Consequently, large quantities of paper are obtained with no other destination
than to be reintegrated into the process as raw material. If it is taken into account
that this rejection material is currently used as a fibrous component, and that its cost
ranges between 2 and 5 times that of the traditional raw material, the need arises to
evaluate new forms of use for this rejection with a high content of cellulose, in search
of materials with important physicochemical and mechanical properties that can be
used in applications of greater value to the company. Now, obtaining cellulose
nanostructures is an interesting alternative: they are biopolymers with characteristics
and properties that are particularly useful for this industry, due to their structure, high
porosity, surface area, low weight and increases in tensile strength. One method of
obtaining these nanostructures is electrospinning, a versatile technique, and widely
used today, in which from a polymeric solution, fine materials of different sizes are
obtained. However, to obtain satisfactory results, the solution should show specific
properties, including high solubility and low viscosity. This has been an important
challenge for obtaining cellulose nanostructures in industry for several years, since
the direct processing of cellulose is difficult due to its strong intermolecular hydrogen
bonding, which affects the solubility in conventional solvents and low environmental
impact. In this study, a methodology for the manipulation of the cellulose of the tissue
paper was implemented. Different solvents were tested, resulting as the best one
aqueous type at 7 wt% NaOH and 12 wt% urea with a low toxic level compared to other conventional solvents, allowing the obtaining of cellulose nanostructures in
electrospinning, these nanostructures were incorporated into recycled paper manu factured at the laboratory level, allowing a increase in tensile strengths between 18
and 44%. This valorization allowed obtaining a material with better mechanical char acteristics, when 1 to 4% cellulose nanostructure was applied, generating a contri bution to knowledge in the paper industry.