Mostrar el registro sencillo del ítem

dc.contributor.advisorMoreno Moreno, Fabián Leonardo
dc.contributor.advisorFilomena Ambrosio, Annamaría
dc.contributor.advisorSotelo Diaz, Luz Indira
dc.contributor.authorÁngel Rendón, Sara Victoria
dc.date.accessioned2021-06-03T21:17:10Z
dc.date.available2021-06-03T21:17:10Z
dc.date.issued2020-03-13
dc.identifier.urihttp://hdl.handle.net/10818/47669
dc.description111 páginases_CO
dc.description.abstractIn Colombia, pork meat is the third most consumed meat source, and while it is of relatively low consumption compared to other countries in Latin America, it is present in a wide variety of preparations in the country, and it is part of the Colombian diet. One of the most important characteristics of foods is heterogeneity, and in meat cooking, it is evidenced by the different cuts found in markets, as they are not a single isolated muscle, but a compendium of different muscles, connective tissue, fat tissue and, at times, bone. Ohmic cooking is a novel technique that, until the past two decades, has been studied for the application on meat cooking, but without widespread commercial application. Characterized by volumetric heating that is dependent on electrical conductivity instead of thermal conductivity, it is an innovative application in the gastronomic sector for the homogenous heating of foods. On the other hand, vacuum cooking consists on cooking under continuous vacuum conditions where sub-atmospheric pressures are achieved, thus resulting in the boiling of water at temperatures below 100°C, and can contribute to the preservation of nutritional and sensorial characteristics of the food matrixes. For meat, sensorial characteristics like colour, flavour, juiciness and softness are some of the “drivers of liking”, or the most important parameters that dictate the preference of consumers at the point of purchase for meat products. Hence, this research proposed to establish the effects of cooking technologies like ohmic and vacuum cooking, on physicochemical and sensorial characteristics of pork meat, specifically short shank. For this, the cooking loss, water holding capacity, colour and sensorial profile of ohmic cooking (21 ± 1 V/cm for 2, 2.5 and 3 minutes) and vacuum cooking (70°C for 25, 30 and 35 minutes) were studied and compared with pan cooking (13 minutes) and sous vide cooking (70°C for 45 minutes) respectively.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectOhmic cookingen
dc.subjectVacuum cookingen
dc.subjectSous vide cookingen
dc.subjectCarne de cerdospa
dc.titleEvaluation of the effects of ohmic and vacuum cooking on the sensorial and physicochemical properties of pork meat (short shank)es_CO
dc.typemasterThesises_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dcterms.referencesAndrés-Bello, A., García-Segovia, P., Martínez-Monzó, J., 2009. Effects of vacuum cooking (cookvide) on the physical-chemical properties of sea bream fillets (Sparus aurata). J. Aquat. Food Prod. Technol. 18, 79–89. https://doi.org/10.1080/10498850802581773en
dcterms.referencesÁngel-Rendón, S.V., Filomena-Ambrosio, A., Cordon-Díaz, S., Benítez-Sastoque, E.R., Sotelo-Díaz, L.I., 2019. Ohmic cooking: Application of a novel technology in pork and influences on water holding capacity, cooking loss and colour. Int. J. Gastron. Food Sci. 17, 100164. https://doi.org/10.1016/j.ijgfs.2019.100164en
dcterms.referencesAykın, E., Erbaş, M., 2016. Quality properties and adsorption behavior of freeze-dried beef meat from the Biceps femoris and Semimembranosus muscles. Meat Sci. 121, 272–277. https://doi.org/10.1016/j.meatsci.2016.06.030en
dcterms.referencesBabić, J., Cantalejo, M.J., Arroqui, C., Babic, J.B., Cantalejo, M.J., Arroqui, C., 2009. The effects of freeze-drying process parameters on Broiler chicken breast meat. LWT - Food Sci. Technol. 42, 1325–1334. https://doi.org/10.1016/j.lwt.2009.03.020en
dcterms.referencesBozkurt, H., Icier, F., 2010. Ohmic cooking of ground beef: Effects on quality. J. Food Eng. 96, 481– 490. https://doi.org/10.1016/j.jfoodeng.2009.08.030en
dcterms.referencesBuckley, D.J., Morrissey, P.A., Gray, J.I., 1995. Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J. Anim. Sci. 73, 3122. https://doi.org/10.2527/1995.73103122xen
dcterms.referencesChen, X.D., Mujumdar, A.S., 2008. Drying technologies in food processing. Blackwell Pub.en
dcterms.referencesCheng, H., Erichsen, H., Soerensen, J., Petersen, M.A., Skibsted, L.H., 2019. Optimising water activity for storage of high lipid and high protein infant formula milk powder using multivariate analysis. Int. Dairy J. 93, 92–98. https://doi.org/10.1016/j.idairyj.2019.02.008en
dcterms.referencesCheng, H., Zhu, R.G., Erichsen, H., Soerensen, J., Petersen, M.A., Skibsted, L.H., 2017. High temperature storage of infant formula milk powder for prediction of storage stability at ambient conditions. Int. Dairy J. 73, 166–174. https://doi.org/10.1016/j.idairyj.2017.05.007en
dcterms.referencesClemente, G., Bon, J., Benedito, J., Mulet, A., 2009. Desorption isotherms and isosteric heat of desorption of previously frozen raw pork meat. Meat Sci. 82, 413–418. https://doi.org/10.1016/j.meatsci.2009.02.020en
dcterms.referencesCosta, N.R., Cappato, L.P., Pereira, M.V.S., Pires, R.P.S., Moraes, J., Esmerino, E.A., Silva, R., Neto, R.P.C., Tavares, M.I.B., Freitas, M.Q., Silveira Júnior, R.N., Rodrigues, F.N., Bisaggio, R.C., Cavalcanti, R.N., Raices, R.S.L., Silva, M.C., Cruz, A.G., 2018. Ohmic Heating: A potential technology for sweet whey processing. Food Res. Int. 106, 771–779. https://doi.org/10.1016/j.foodres.2018.01.046en
dcterms.referencesDai, Y., Lu, Y., Wu, W., Lu, X.M., Han, Z.P., Liu, Y., Li, X.M., Dai, R.T., 2014. Changes in oxidation, 104 color and texture deteriorations during refrigerated storage of ohmically and water bath-cooked pork meat. Innov. Food Sci. Emerg. Technol. 26, 341–346. https://doi.org/10.1016/j.ifset.2014.06.009en
dcterms.referencesFadavi, A., Yousefi, S., Darvishi, H., Mirsaeedghazi, H., 2018. Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate. Innov. Food Sci. Emerg. Technol. 47, 225–230. https://doi.org/10.1016/j.ifset.2018.03.004en
dcterms.referencesFuentes, V., Ventanas, J., Morcuende, D., Estévez, M., Ventanas, S., 2010. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. Meat Sci. 85, 506–514. https://doi.org/10.1016/j.meatsci.2010.02.024en
dcterms.referencesGarcía-Segovia, P., Andrés-Bello, A., Martínez-Monzó, J., 2007. Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). J. Food Eng. 80, 813– 821. https://doi.org/10.1016/j.jfoodeng.2006.07.010en
dcterms.referencesHunt, M.C., King, A., Barbut, S., Clause, J., Cornforth, D., Hanson, D., Lindahl, G., Mancini, R., Milkowski, A., Mohan, A., 2012. AMSA meat color measurement guidelines, American Meat Science Association, Champaign, Illinois USA.en
dcterms.referencesJay, James M., Loessner, Martin J., and Golden, D.A., 2005. Modern Food Microbiology. Mod. Food Microbiol. SE - 18. https://doi.org/10.1007/0-387-23413-6_18en
dcterms.referencesKanner, J., 1994. Oxidative processes in meat and meat products: Quality implications. Meat Sci. 36, 169–189. https://doi.org/10.1016/0309-1740(94)90040-Xen
dcterms.referencesKim, Y.H., Huff-Lonergan, E., Sebranek, J.G., Lonergan, S.M., 2010. High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci. 85, 759–767. https://doi.org/10.1016/j.meatsci.2010.04.001en
dcterms.referencesKondjoyan, A., Chevolleau, S., Grève, E., Gatellier, P., Santé-Lhoutellier, V., Bruel, S., Touzet, C., Portanguen, S., Debrauwer, L., 2010. Modelling the formation of heterocyclic amines in slices of longissimus thoracis and semimembranosus beef muscles subjected to jets of hot air. Food Chem. 123, 659–668. https://doi.org/10.1016/j.foodchem.2010.05.02en
dcterms.referencesLabuza, T.P., Dugan, L.R., 1971. Kinetics of lipid oxidation in foods. C R C Crit. Rev. Food Technol. 2, 355–405. https://doi.org/10.1080/10408397109527127en
dcterms.referencesLaopoolkit, P., Suwannaporn, P., 2011. Effect of pretreatments and vacuum drying on instant dried pork process optimization. Meat Sci. 88, 553–558. https://doi.org/10.1016/j.meatsci.2011.02.011en
dcterms.referencesLopez-Quiroga, E., Antelo, L.T., Alonso, A.A., 2012. Time-scale modeling and optimal control of freeze-drying. J. Food Eng. 111, 655–666. https://doi.org/10.1016/j.jfoodeng.2012.03.001en
dcterms.referencesLuber, P., 2011. The Codex Alimentarius guidelines on the application of general principles of food hygiene to the control of Listeria monocytogenes in ready-to-eat foods. Food Control 22, 1482– 1483. https://doi.org/10.1016/j.foodcont.2010.07.013en
dcterms.referencesMa, Y., Wu, X., Zhang, Q., Giovanni, V., Meng, X., 2018. Key composition optimization of meat processed protein source by vacuum freeze-drying technology. Saudi J. Biol. Sci. 25, 724–732. https://doi.org/10.1016/j.sjbs.2017.09.013en
dcterms.referencesMcdonnell, C.K., Allen, P., Chardonnereau, F.S., Arimi, J.M., Lyng, J.G., 2014. The use of pulsed 105 electric fields for accelerating the salting of pork. https://doi.org/10.1016/j.lwt.2014.05.053en
dcterms.referencesMordor Intelligence, 2018. Freeze Dried Food Market: Growth, Trends, Forecasts (2019-2024)en
dcterms.referencesOFR, O. of the F.R., 2019. Electronic Code of Federal Reculations. Title 21 — Food and Drugs. Code Fed. Regul. United States Amen
dcterms.referencesPedersen, S.J., Feyissa, A.H., Brøkner Kavli, S.T., Frosch, S., 2016. An investigation on the application of ohmic heating of cold water shrimp and brine mixtures. J. Food Eng. 179, 28–35. https://doi.org/10.1016/j.jfoodeng.2016.01.022en
dcterms.referencesRuan, R., Ye, X., Chen, P., Doona, C., Yang, T., 2004. Developments in ohmic heating, in: Improving the Thermal Processing of Foods. Elsevier Ltd, pp. 224–252. https://doi.org/10.1016/B978-1- 85573-730-3.50016-4en
dcterms.referencesSkovgaard, N., 2009. Drying technologies in food processing. Int. J. Food Microbiol. 129, 209. https://doi.org/10.1016/j.ijfoodmicro.2008.12.004en
dcterms.referencesStapelfeldt, H., Meisen, B.R., Skibsted, L.H., 1997. Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int. Dairy J. 7, 331–339. https://doi.org/10.1016/S0958-6946(97)00016-2en
dcterms.referencesWan, J., Cao, A., Cai, L., 2019. Effects of vacuum or sous-vide cooking methods on the quality of largemouth bass (Micropterus salmoides). Int. J. Gastron. Food Sci. 18. https://doi.org/10.1016/j.ijgfs.2019.100181en
dcterms.referencesYalçin, M.Y., Şeker, M., 2016. Effect of salt and moisture content reduction on physical and microbiological properties of salted, pressed and freeze dried turkey meat. LWT - Food Sci. Technol. 68, 153–159. https://doi.org/10.1016/j.lwt.2015.12.032en
dcterms.referencesZell, M., Lyng, J.G., Cronin, D.A., Morgan, D.J., 2010. Ohmic cooking of whole turkey meat - Effect of rapid ohmic heating on selected product parameters. Food Chem. 120, 724–729. https://doi.org/10.1016/j.foodchem.2009.10.069en
dcterms.referencesZeng, X. an, Han, Z., Zi, Z. hong, 2010. Effects of pulsed electric field treatments on quality of peanut oil. Food Control 21, 611–614. https://doi.org/10.1016/j.foodcont.2009.09.004en
dc.agrosavia
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelMaestría en Diseño y Gestión de Procesos2020es_CO
thesis.degree.nameMagíster en Diseño y Gestión de Procesoses_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional