Mostrar el registro sencillo del ítem

dc.contributor.advisorQuintanilla Carvajal, María Ximena
dc.contributor.authorRicaurte Puentes, Leidy Yineth
dc.date.accessioned2020-12-17T17:02:02Z
dc.date.available2020-12-17T17:02:02Z
dc.date.issued2020-10-11
dc.identifier.urihttp://hdl.handle.net/10818/45995
dc.description198 páginases_CO
dc.description.abstractColombia is one of the leaders of palm oil production with 540,688 hectares harvested in 2019 (Fedepalma, 2019b), and a yield of 3.8 oil tons per hectare achieved in 2017 (overcoming the world average). Despite this, only 42% was sold to produce biodiesel and the 0.1% for oil and fat industry (Fedepalma, 2019a), contributing in a 9% to the gross domestic product (PIB, according to its Spanish abbreviation) of the country in 2018 (Fedepalma, 2018). The palm oil is an edible vegetable oil, which is extracted from mesocarp of several palm species with an orange-red color due to the presence of carotenoids (Marangoni et al., 2015). Currently a hybrid between Elaeis Guinensis and Oleifera has been widely harvested which produces an oil with high concentration of oleic acid (55%) compared to 41% from traditional palm oil (Mozzon et al., 2013). Therefore, it is known as high oleic palm oil (HOPO). The HOPO has showed to be ‘the tropical oil equivalent of olive oil’ due to several authors have reported similar effect on plasma lipids, for this oil and extra virgin olive oil (Lucci et al., 2016). Likewise, the antioxidant capacity of human plasma increased significantly after 3 months of supplementation with HOPO (Ojeda et al., 2017). For this reason, using this oil in final edible products could enhance the quality of nutrition in Colombia, for its high concentrations of vitamin E, beta-carotene, and high unsaturated fatty acids that could be supplied. However, those labile compounds are typically lost during food processing. Hence, to assure a high concentration not only in the product, but also after the intake, encapsulation has been proposed as protection technique.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.titleEncapsulation of high oleic palm oil using microfluidization and electrospinning: physicochemical characterization and nanotoxicity performanceen
dc.typedoctoral thesises_CO
dc.identifier.local279968
dc.identifier.localTE11049
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcEncapsulaciónspa
dc.subject.armarcAceite de palmaspa
dc.subject.armarcNanotecnologíaspa
dcterms.referencesAbdel-Khalek, A. A., Kadry, M. A. M., Badran, S. R., & Marie, M.-A. S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. The Journal of Basic & Applied Zoology, 72, 43–57. https://doi.org/https://doi.org/10.1016/j.jobaz.2015.04.001eng
dcterms.referencesArora, S., Rajwade, J. M., & Paknikar, K. M. (2012). Nanotoxicology and in vitro studies: The need of the hour. Toxicology and Applied Pharmacology, 258(2), 151–165. https://doi.org/10.1016/j.taap.2011.11.010eng
dcterms.referencesBala, K., Ambwani, K., & Gohil, N. K. (2011). Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: Implication on use of higher passage cells. Tissue and Cell, 43(4), 216–222. https://doi.org/https://doi.org/10.1016/j.tice.2011.03.004eng
dcterms.referencesBazana, M. T., Codevilla, C. F., & de Menezes, C. R. (2019). Nanoencapsulation of bioactive compounds: challenges and perspectives. Current Opinion in Food Science, 26, 47–56. https://doi.org/https://doi.org/10.1016/j.cofs.2019.03.005eng
dcterms.referencesCao, Y., Gong, Y., Liu, L., Zhou, Y., Fang, X., Zhang, C., Li, Y., & Li, J. (2017). The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. Journal of Applied Toxicology, 37(12), 1359–1369. https://doi.org/10.1002/jat.3470eng
dcterms.referencesCardona, M., López, J. A., Serafín, A., Rongvaux, A., Inserte, J., García-Dorado, D., Flavell, R., Llovera, M., Cañas, X., Vázquez, J., & Sanchis, D. (2015). Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart. PloS One, 10(6), e0131411–e0131411. https://doi.org/10.1371/journal.pone.0131411eng
dcterms.referencesChen, W., Ju, X., Aluko, R. E., Zou, Y., Wang, Z., Liu, M., & He, R. (2020). Rice bran protein-based nanoemulsion carrier for improving stability and bioavailability of quercetin. Food Hydrocolloids, 108, 106042. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106042eng
dcterms.referencesCook-Johnson, R. J., Demasi, M., Cleland, L. G., Gamble, J. R., Saint, D. A., & James, M. J. (2006). Endothelial cell COX-2 expression and activity in hypoxia. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1761(12), 1443–1449. https://doi.org/https://doi.org/10.1016/j.bbalip.2006.09.003eng
dcterms.referencesFarshi, P., Tabibiazar, M., Ghorbani, M., Mohammadifar, M., Amirkhiz, M. B., & Hamishehkar, H. (2019). Whey protein isolate-guar gum stabilized cumin seed oil nanoemulsion. Food Bioscience, 28, 49–56. https://doi.org/https://doi.org/10.1016/j.fbio.2019.01.011eng
dcterms.referencesGenah, S., Angeli, A., Supuran, C. T., & Morbidelli, L. (2020). Effect of Carbonic Anhydrase IX inhibitors on human endothelial cell survival. Pharmacological Research, 159(May), 104964. https://doi.org/10.1016/j.phrs.2020.104964eng
dcterms.referencesGolebiowski, B., Chao, C., Bui, K. A., Lam, W. Y. W., Richdale, K., & Stapleton, F. (2020). Effect of age and contact lens wear on corneal epithelial dendritic cell distribution, density, and morphology. Contact Lens and Anterior Eye, 43(1), 84–90. https://doi.org/https://doi.org/10.1016/j.clae.2019.05.002eng
dcterms.referencesİnal, M., & Mülazımoğlu, G. (2019). Production and characterization of bactericidal wound dressing material based on gelatin nanofiber. International Journal of Biological Macromolecules, 137, 392–404. https://doi.org/10.1016/j.ijbiomac.2019.06.119eng
dcterms.referencesIyer, V. R., Eisen, M. B., Ross, D. T., Schuler, G., Moore, T., Lee, J. C. F., Trent, J. M., Staudt, L. M., Jr, J. H., Boguski, M. S., Lashkari, D., Shalon, D., Botstein, D., & Brown, P. O. (1999). The Transcriptional Program in the response of fibroblast. Science, 283, 83–87.eng
dcterms.referencesJi, X., Usman, A., Razalli, N. H., Sambanthamurthi, R., & Gupta, S. V. (2015). Oil Palm Phenolics (OPP) Inhibit Pancreatic Cancer Cell Proliferation via Suppression of NF- κB Pathway. Anticancer Research, 106, 97–106.eng
dcterms.referencesKaur, K., Kumar, R., Arpita, Goel, S., Uppal, S., Bhatia, A., & Mehta, S. K. (2017). Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. Ultrasonics Sonochemistry, 34, 173–182. https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.05.037eng
dcterms.referencesKent, K. D., Harper, W. J., & Bomser, J. A. (2003). Effect of whey protein isolate on intracellular glutathione and oxidant-induced cell death in human prostate epithelial cells. Toxicology in Vitro, 17(1), 27–33. https://doi.org/10.1016/S0887-2333(02)00119-4eng
dcterms.referencesLippens, S., Kockx, M., Knaapen, M., Mortier, L., Polakowska, R., Verheyen, A., Garmyn, M., Zwijsen, A., Formstecher, P., Huylebroeck, D., Vandenabeele, P., & Declercq, W. (2000). Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death & Differentiation, 7(12), 1218–1224. https://doi.org/10.1038/sj.cdd.4400785eng
dcterms.referencesLucci, P., Borrero, M., Ruiz, A., Pacetti, D., Frega, N. G., Diez, O., Ojeda, M., Gagliardi, R., Parra, L., & Angel, M. (2016). Palm oil and cardiovascular disease: A randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns. Food and Function, 7(1), 347–354. https://doi.org/10.1039/c5fo01083geng
dcterms.referencesManders, E. M. M., Verbeek, F. J., & Aten, J. A. (1993). Measurement of co‐localization of objects in dual‐ colour confocal images. Journal of Microscopy, 169(3), 375–382. https://doi.org/10.1111/j.1365- 2818.1993.tb03313.xeng
dcterms.referencesManzuoerh, R., Farahpour, M. R., Oryan, A., & Sonboli, A. (2019). Effectiveness of topical administration of Anethum graveolens essential oil on MRSA-infected wounds. Biomedicine & Pharmacotherapy, 109, 1650–1658. https://doi.org/https://doi.org/10.1016/j.biopha.2018.10.117eng
dcterms.referencesMcClements, D. J., & Rao, J. (2011). Food-Grade nanoemulsions: Formulation, fabrication, properties, performance, Biological fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558eng
dcterms.referencesMcIlwain, D. R., Berger, T., & Mak, T. W. (2015). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 7(4). https://doi.org/10.1101/cshperspect.a026716eng
dcterms.referencesMehrabadi, M. E., Salemi, Z., Babaie, S., & Panahi, M. (2018). Effect of Biochanin A on Retina Levels of Vascular Endothelial Growth Factor, Tumor Necrosis Factor-Alpha and Interleukin-1Beta in Rats With Streptozotocin-Induced Diabetes. Canadian Journal of Diabetes, 42(6), 639–644. https://doi.org/https://doi.org/10.1016/j.jcjd.2018.03.008eng
dcterms.referencesMiura, M., Chen, X.-D., Allen, M. R., Bi, Y., Gronthos, S., Seo, B.-M., Lakhani, S., Flavell, R. A., Feng, X.-H., Robey, P. G., Young, M., & Shi, S. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. The Journal of Clinical Investigation, 114(12), 1704–1713. https://doi.org/10.1172/JCI20427eng
dcterms.referencesMozzon, M., Pacetti, D., Lucci, P., Balzano, M., & Frega, N. G. (2013). Crude palm oil from interspecific hybrid Elaeis oleifera × Elaeis guineensis: Fatty acid regiodistribution and molecular species of glycerides. Food Chemistry, 141(1), 245–252. https://doi.org/10.1016/j.foodchem.2013.03.016eng
dcterms.referencesMutalib, M. S. A., Khaza’ai, H., & Wahle, K. W. J. (2003). Palm-tocotrienol rich fraction (TRF) is a more effective inhibitor of LDL oxidation and endothelial cell lipid peroxidation than α-tocopherol in vitro. Food Research International, 36(5), 405–413. https://doi.org/10.1016/S0963-9969(02)00173-4eng
dcterms.referencesNitta, Y., Muraoka-Hirayama, S., & Sakurai, K. (2020). Catalase is required for peroxisome maintenance during adipogenesis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(8), 158726. https://doi.org/https://doi.org/10.1016/j.bbalip.2020.158726eng
dcterms.referencesPérez-Garijo, A. (2018). When dying is not the end: Apoptotic caspases as drivers of proliferation. Seminars in Cell & Developmental Biology, 82, 86–95. https://doi.org/https://doi.org/10.1016/j.semcdb.2017.11.036eng
dcterms.referencesPetersen, S., Steiniger, F., Fischer, D., Fahr, A., & Bunjes, H. (2011). The physical state of lipid nanoparticles influences their effect on in vitro cell viability. European Journal of Pharmaceutics and Biopharmaceutics, 79(1), 150–161. https://doi.org/https://doi.org/10.1016/j.ejpb.2011.03.022eng
dcterms.referencesPisoschi, A. M., Pop, A., Cimpeanu, C., Turcuş, V., Predoi, G., & Iordache, F. (2018). Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. European Journal of Medicinal Chemistry, 157, 1326–1345. https://doi.org/https://doi.org/10.1016/j.ejmech.2018.08.076eng
dcterms.referencesPyrshev, K. A., Yesylevskyy, S. O., Mély, Y., Demchenko, A. P., & Klymchenko, A. S. (2017). Caspase3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1859(10), 2123–2132. https://doi.org/https://doi.org/10.1016/j.bbamem.2017.08.002eng
dcterms.referencesRicaurte, L., Hernández-Carrión, M., Moyano-Molano, M., Clavijo-Romero, A., & Quintanilla-Carvajal, M. X. (2018). Physical, thermal and thermodynamical study of high oleic palm oil nanoemulsions. Food Chemistry, 256(February), 62–70. https://doi.org/10.1016/j.foodchem.2018.02.102eng
dcterms.referencesRicaurte, L., Perea-Flores, M. de J., Martinez, A., & Quintanilla-Carvajal, M. X. (2016). Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization) [JOUR]. Innovative Food Science & Emerging Technologies, 35, 75–85. https://doi.org/http://dx.doi.org/10.1016/j.ifset.2016.04.004eng
dcterms.referencesRicaurte, L., & Quintanilla-Carvajal, M. X. (2019). Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends in Food Science and Technology, 85, 92–106. https://doi.org/S0924224418303315eng
dcterms.referencesRicaurte, L., Santagapita, P. R., Díaz, L. E., & Quintanilla-Carvajal, M. X. (2020). Edible gelatin-based nanofibres loaded with oil encapsulating high-oleic palm oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 595(March), 124673. https://doi.org/10.1016/j.colsurfa.2020.124673eng
dcterms.referencesRicaurte, L., Tello-Camacho, E., & Quintanilla-Carvajal, M. X. (2019). Hydrolysed Gelatin-Derived, Solvent-Free, Electrospun Nanofibres for Edible Applications: Physical, Chemical and Thermal Behaviour. Food Biophysics. https://doi.org/10.1007/s11483-019-09608-9eng
dcterms.referencesRincón, S. M., Hormaza, P. A., Moreno, L. P., Prada, F., Portillo, D. J., García, J. A., & Romero, H. M. (2013). Use of phenological stages of the fruits and physicochemical characteristics of the oil to determine the optimal harvest time of oil palm interspecific OxG hybrid fruits. Industrial Crops and Products, 49, 204–210. https://doi.org/10.1016/j.indcrop.2013.04.035eng
dcterms.referencesRohman, A., Windarsih, A., Erwanto, Y., & Zakaria, Z. (2020). Review on analytical methods for analysis of porcine gelatine in food and pharmaceutical products for halal authentication. Trends in Food Science & Technology, 101, 122–132. https://doi.org/https://doi.org/10.1016/j.tifs.2020.05.008eng
dcterms.referencesRosa, A., Rescigno, A., Piras, A., Atzeri, A., Scano, P., Porcedda, S., Zucca, P., & Assunta Dessì, M. (2012). Chemical composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil from Cynomorium coccineum L. Food and Chemical Toxicology, 50(10), 3799–3807. https://doi.org/https://doi.org/10.1016/j.fct.2012.07.003eng
dcterms.referencesShanmugapriya, K., Kim, H., Saravana, P. S., Chun, B.-S., & Kang, H. W. (2018). Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects. Colloids and Surfaces B: Biointerfaces, 172, 170–179. https://doi.org/https://doi.org/10.1016/j.colsurfb.2018.08.042eng
dcterms.referencesShatrova, A. N., Lyublinskaya, O. G., Borodkina, A. V., & Burova, E. B. (2016). Oxidative stress response of human fibroblasts and endometrial mesenchymal stem cells. Cell and Tissue Biology, 10(1), 18–28. https://doi.org/10.1134/S1990519X16010090eng
dcterms.referencesShi, F., Wang, Y.-C., Zhao, T.-Z., Zhang, S., Du, T.-Y., Yang, C.-B., Li, Y.-H., & Sun, X.-Q. (2012). Effects of Simulated Microgravity on Human Umbilical Vein Endothelial Cell Angiogenesis and Role of the PI3K-Akt-eNOS Signal Pathway. PLOS ONE, 7(7), e40365. https://doi.org/10.1371/journal.pone.0040365eng
dcterms.referencesTölle, M., Klöckl, L., Wiedon, A., Zidek, W., van der Giet, M., & Schuchardt, M. (2016). Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3. Biochemical and Biophysical Research Communications, 476(4), 627–634. https://doi.org/10.1016/j.bbrc.2016.06.009eng
dcterms.referencesVij, P., & Hardej, D. (2012). Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environmental Toxicology and Pharmacology, 34(3), 768–782. https://doi.org/https://doi.org/10.1016/j.etap.2012.09.009eng
dcterms.referencesWen, T., Yang, A., Piao, L., Hao, S., Du, L., Meng, J., Liu, J., & Xu, H. (2019). Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. International Journal of Nanomedicine, 14, 4475–4489. https://doi.org/10.2147/IJN.S208225eng
dcterms.referencesYan, X.-X., Najbauer, J., Woo, C. C., Dashtipour, K., Ribak, C. E., & Leon, M. (2001). Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrain. Journal of Comparative Neurology, 433(1), 4–22. https://doi.org/10.1002/cne.1121eng
dcterms.referencesYap, H.-M., & Lye, K.-L. (2020). An Insight of Vitamin E as Neuroprotective Agents. Progress In Microbes & Molecular Biology, 3(1), 1–6. https://doi.org/10.36877/pmmb.a0000071eng
dcterms.referencesYap, H.-M., & Lye, K.-L. (2020). An Insight of Vitamin E as Neuroprotective Agents. Progress In Microbes & Molecular Biology, 3(1), 1–6. https://doi.org/10.36877/pmmb.a0000071eng
dcterms.referencesYoon, B. H., Lee, S. M., Chang, H.-I., & Ha, C. H. (2019). Mannoproteins from Saccharomyces cerevisiae stimulate angiogenesis by promoting the akt-eNOS signaling pathway in endothelial cells. Biochemical and Biophysical Research Communications, 519(4), 767–772. https://doi.org/https://doi.org/10.1016/j.bbrc.2019.09.069eng
dcterms.referencesYosefzon, Y., Soteriou, D., Feldman, A., Kostic, L., Koren, E., Brown, S., Ankawa, R., Sedov, E., Glaser, F., & Fuchs, Y. (2018). Caspase-3 Regulates YAP-Dependent Cell Proliferation and Organ Size. Molecular Cell, 70(4), 573-587.e4. https://doi.org/https://doi.org/10.1016/j.molcel.2018.04.019eng
dcterms.referencesZaichik, S., Steinbring, C., Jelkmann, M., & Bernkop-Schnürch, A. (2020). Zeta potential changing nanoemulsions: Impact of PEG-corona on phosphate cleavage. International Journal of Pharmaceutics, 581, 119299. https://doi.org/https://doi.org/10.1016/j.ijpharm.2020.119299eng
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International