Mostrar el registro sencillo del ítem

dc.contributor.advisorDuque Bedoya, Erika Teresa
dc.contributor.authorDíaz Zamudio, Jasson
dc.date.accessioned2020-10-30T14:07:39Z
dc.date.available2020-10-30T14:07:39Z
dc.date.issued2020-10-07
dc.identifier.urihttp://hdl.handle.net/10818/43898
dc.description23 páginases_CO
dc.description.abstractEl objetivo de este artículo se centra en la revisión de la literatura científica entre el año 2015 y 2020 para analizar la incidencia del pensamiento computacional en el desarrollo de prácticas educativas que abordan los conceptos, enfoques de trabajo y perspectivas en los niveles formativos de la educación básica y media. En la revisión se consideraron 50 artículos de investigación asociados a la implementación de herramientas de Tecnología de la Información y la Comunicación (TIC) para la formación de pensamiento computacional y los resultados producto de las implementaciones. Los principales hallazgos son: la poca recurrencia a los conceptos propuestos por Computing at School (CAS) como la descomposición, la abstracción, el reconocimiento de patrones y de enfoques de trabajo tales como los retoques y la perseverancia por parte de los investigadores en el campo. Aunque el pensamiento computacional es ampliamente estudiado en contextos relacionados con la informática, como Science, Technology, Engineering and Mathematics (STEM) y la robótica, no se evidencia aún un abordaje significativo en cuanto a la sistematización de las perspectivas definidas para el pensamiento computacional en las prácticas educativas, por lo que se deja abierta la posibilidad de un análisis subjetivo y se sigue asociando el pensamiento computacional con las ciencias de la computación, a pesar de que las experiencias educativas abordan conceptos STEM como la resolución de problemas.spa
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.titlePensamiento computacional: una revisión sobre sus conceptos, enfoques y perspectivases_CO
dc.typemasterThesises_CO
dc.identifier.local279504
dc.identifier.localTE10966
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.subject.armarcInnovaciones educativasspa
dc.subject.armarcTecnologías de la información y de la comunicaciónspa
dc.subject.armarcInteligencia artificialspa
dc.subject.armarcPensamiento creativospa
dc.subject.armarcEducaciónspa
dc.subject.armarcComputaciónspa
dcterms.referencesArastoopour Irgens, G., Dabholkar, S., Bain, C., Woods, P., Hall, K., Swanson, H., … Wilensky, U. (2020). Modeling and Measuring High School Students’ Computational Thinking Practices in Science. Journal of Science Education and Technology, 29(1), 137–161. https://doi.org/10.1007/s10956-020-09811-1eng
dcterms.referencesArdito, G., Czerkawski, B., & Scollins, L. (2020). Learning Computational Thinking Together: Effects of Gender Differences in Collaborative Middle School Robotics Program. TechTrends, 64(3), 373–387. https://doi.org/10.1007/s11528-019-00461-8eng
dcterms.referencesBarr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? ACM Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905eng
dcterms.referencesBasu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identifying middle school students’ challenges in computational thinking-based science learning. Research and Practice in Technology Enhanced Learning, 11(1). https://doi.org/10.1186/s41039-016-0036- 2eng
dcterms.referencesBrennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Studies in Computational Intelligence, 727, 135–160. https://doi.org/10.1007/978-3-319-64051-8_9eng
dcterms.referencesBustillo Bayón, J. (2015). Teacher training with scratch: Analysis of low impact in the classroom | Formación del profesorado con scratch: Análisis de la escasa incidencia en el aula. Opcion, 31, 164–182.eng
dcterms.referencesCetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring Utilization of Scratch. Journal of Educational Computing Research, 54(7), 997–1021. https://doi.org/10.1177/0735633116642774eng
dcterms.referencesCsapó, G. (2019). Placing event-action-based visual programming in the process of computer science education. Acta Polytechnica Hungarica, 16(2), 35–57. https://doi.org/10.12700/APH.16.2.2019.2.3eng
dcterms.referencesCsizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computational thinking A guide for teachers. 18.eng
dcterms.referencesDenning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438eng
dcterms.referencesFang, A.-D., Chen, G.-L., Cai, Z.-R., Cui, L., & Harn, L. (2017). Research on blending learning flipped class model in colleges and universities based on computational thinking - “Database principles” for example. Eurasia Journal of Mathematics, Science and Technology Education, 13(8), 5747–5755. https://doi.org/10.12973/eurasia.2017.01024aeng
dcterms.referencesGadanidis, G. (2017). Artificial intelligence, computational thinking, and mathematics education. International Journal of Information and Learning Technology, 34(2), 133–139. https://doi.org/10.1108/IJILT-09-2016-0048eng
dcterms.referencesGarneli, V., & Chorianopoulos, K. (2019). The effects of video game making within science content on student computational thinking skills and performance. Interactive Technology and Smart Education, 16(4), 301–318. https://doi.org/10.1108/ITSE-11-2018-0097eng
dcterms.referencesHsiao, H.-S., Lin, Y.-W., Lin, K.-Y., Lin, C.-Y., Chen, J.-H., & Chen, J.-C. (2019). Using robotbased practices to develop an activity that incorporated the 6E model to improve elementary school students’ learning performances. Interactive Learning Environments. https://doi.org/10.1080/10494820.2019.1636090eng
dcterms.referencesJ., H. (2007). The coding Process and its Challenges. , The SAGE handbook of grounded theory (pp. 265-289). Thousand Oaks, CA: Sage Publications. (A. B. y K. Charmaz, Ed.). Jenson, J., & Droumeva, M. (2017). Revisiting the media generation: Youth media use and computational literacy instruction. E-Learning and Digital Media, 14(4), 212–225. https://doi.org/10.1177/2042753017731357eng
dcterms.referencesJenson, Jennifer, & Droumeva, M. (2017). Revisiting the media generation: Youth media use and computational literacy instruction. E-Learning and Digital Media, 14(4), 212–225. https://doi.org/10.1177/2042753017731357eng
dcterms.referencesLeonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-Hill, J., Robinson, R., & HesterCroff, C. (2018). Preparing Teachers to Engage Rural Students in Computational Thinking Through Robotics, Game Design, and Culturally Responsive Teaching. Journal of Teacher Education, 69(4), 386–407. https://doi.org/10.1177/0022487117732317eng
dcterms.referencesLu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE Bulletin Inroads, 41(1), 260–264. https://doi.org/10.1145/1539024.1508959eng
dcterms.referencesLui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Fields, D., & Jayathirtha, G. (2020). Communicating computational concepts and practices within high school students’ portfolios of making electronic textiles. Interactive Learning Environments, 28(3), 284–301. https://doi.org/10.1080/10494820.2019.1612446eng
dcterms.referencesMatsumoto, P. S., & Cao, J. (2017). The Development of Computational Thinking in a High School Chemistry Course. Journal of Chemical Education, 94(9), 1217–1224. https://doi.org/10.1021/acs.jchemed.6b00973eng
dcterms.referencesMoon, J., Do, J., Lee, D., & Choi, G. W. (2020). A conceptual framework for teaching computational thinking in personalized OERs. Smart Learning Environments, 7(1). https://doi.org/10.1186/s40561-019-0108-zeng
dcterms.referencesMouza, C., Yang, H., Pan, Y.-C., Yilmaz Ozden, S., & Pollock, L. (2017). Resetting educational technology coursework for pre-service teachers: A computational thinking approach to the development of technological pedagogical content knowledge (TPACK). Australasian Journal of Educational Technology, 33(3), 61–76. https://doi.org/10.14742/ajet.3521eng
dcterms.referencesMouza, Chrystalla, Yang, H., Pan, Y. C., Yilmaz Ozden, S., & Pollock, L. (2017). Resetting educational technology coursework for pre-service teachers: A computational thinking approach to the development of technological pedagogical content knowledge (TPACK). Australasian Journal of Educational Technology, 33(3), 61–76. https://doi.org/10.14742/ajet.3521eng
dcterms.referencesPierson, A. E., Brady, C. E., & Clark, D. B. (2020). Balancing the Environment: Computational Models as Interactive Participants in a STEM Classroom. Journal of Science Education and Technology, 29(1), 101–119. https://doi.org/10.1007/s10956-019-09797-5eng
dcterms.referencesRich, K. M., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differences in mathematical and computational thinking: implications for integrated instruction. Interactive Learning Environments, 28(3), 272–283. https://doi.org/10.1080/10494820.2019.1612445eng
dcterms.referencesRich, K. M., Yadav, A., & Larimore, R. A. (2020). Teacher implementation profiles for integrating computational thinking into elementary mathematics and science instruction. Education and Information Technologies. https://doi.org/10.1007/s10639-020-10115-5eng
dcterms.referencesRich, P. J., Browning, S. F., Perkins, M. K., Shoop, T., Yoshikawa, E., & Belikov, O. M. (2019). Coding in K-8: International Trends in Teaching Elementary/Primary Computing. TechTrends, 63(3), 311–329. https://doi.org/10.1007/s11528-018-0295-4eng
dcterms.referencesRico, M. J., & Olabe, X. B. (2018). Pensamiento computacional: rompiendo brechas digitales y educativas. Edmetic: Revista de Educación Mediática y TIC, Vol 7, Iss 1, Pp 26-42 (2018) VO - 7, (1), 26. https://doi.org/10.21071/edmetic.v7i1.10039spa
dcterms.referencesRomán-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047eng
dcterms.referencesSáez-López, J.-M., Sevillano-García, M.-L., & Vazquez-Cano, E. (2019). The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development, 67(6), 1405–1425. https://doi.org/10.1007/s11423-019-09648-5eng
dcterms.referencesSchool, C. A. (2014). BarefootCAS. Retrieved from https://www.computingatschool.org.uk/eng
dcterms.referencesScott, C. L. (2015). El futuro del Aprendizaje 2 ¿Qué tipo de aprendizaje se necesita en el siglo XXI? Investigación y Prospectiva En Educación, 1–19.spa
dcterms.referencesSelby, C. C. (2014). l How Can the Teaching of Programming Be Used to Enhance Computational Thinking Skills?eng
dcterms.referencesSentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies, 22(2), 469–495. https://doi.org/10.1007/s10639-016-9482-0eng
dcterms.referencesSentance, S, & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies, 22(2), 469–495. https://doi.org/10.1007/s10639-016-9482-0eng
dcterms.referencesSegura, A., Nebot, L., Mon, E., Novella, V. (2019). The discussion on computational thinking in education. Ried-Revista Iberoamericana De Educacion a Distancia, 22(1), 171–186. https://doi.org/10.5944/ried.22.1.22303eng
dcterms.referencesSeo, Y.-H., & Kim, J.-H. (2016). Analyzing the effects of coding education through pair programming for the computational thinking and creativity of elementary school students. Indian Journal of Science and Technology, 9(46). https://doi.org/10.17485/ijst/2016/v9i46/107837eng
dcterms.referencesShorey, S., Hill, B. M., & Woolley, S. (2020). From hanging out to figuring it out: Socializing online as a pathway to computational thinking. New Media and Society. https://doi.org/10.1177/1461444820923674eng
dcterms.referencesSinclair, N., & Patterson, M. (2018). The Dynamic Geometrisation of Computer Programming. Mathematical Thinking and Learning, 20(1), 54–74. https://doi.org/10.1080/10986065.2018.1403541eng
dcterms.referencesSinclair, Nathalie, & Patterson, M. (2018). The Dynamic Geometrisation of Computer Programming. Mathematical Thinking and Learning, 20(1), 54–74. https://doi.org/10.1080/10986065.2018.1403541eng
dcterms.referencesSoleimani, A., Herro, D., & Green, K. E. (2019). CyberPLAYce—A tangible, interactive learning tool fostering children’s computational thinking through storytelling. International Journal of Child-Computer Interaction, 20, 9–23. https://doi.org/10.1016/j.ijcci.2019.01.002eng
dcterms.referencesWangenheim, C. G., Hauck, J. C. R., Demetrio, M. F., Pelle, R., da Cruz Alves, N., Barbosa, H., & Azevedo, L. F. (2018). CodeMaster - Automatic assessment and grading of app inventor and snap! Programs. Informatics in Education, 17(1), 117–150. https://doi.org/10.15388/infedu.2018.08eng
dcterms.referencesVoogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015a). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-9412-6eng
dcterms.referencesVoogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015b). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-9412-6eng
dcterms.referencesWeintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5eng
dcterms.referencesWing, J. (2006). Explanation-based learning. COMMUNICATIONS OF THE ACM, 49(3), 33– 36. Retrieved from https://cacm.acm.org/magazines/2006/3/5977-computationalthinking/fulltext.eng
dcterms.referencesWong, G. K.-W., & Cheung, H.-Y. (2020). Exploring children’s perceptions of developing twenty-first century skills through computational thinking and programming. Interactive Learning Environments, 28(4), 438–450. https://doi.org/10.1080/10494820.2018.1534245eng
dcterms.referencesYang, K., Liu, X., & Chen, G. (2020). Global research trends in robot education in 2009-2019: A bibliometric analysis. International Journal of Information and Education Technology, 10(6), 476–481. https://doi.org/10.18178/ijiet.2020.10.6.1410eng
dcterms.referencesZapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital Computational Thinking: A New Digital Literacy. RED. Revista de Educación a Distancia. Núm, 46. Retrieved from http://www.um.es/ead/red/46spa
thesis.degree.disciplineCentro de Tecnologías para la Academiaes_CO
thesis.degree.levelMaestría en Informática Educativaes_CO
thesis.degree.nameMagíster en Informática Educativaes_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International