Mostrar el registro sencillo del ítem

dc.contributor.advisorMoreno Moreno, Fabián Leonardo
dc.contributor.authorCastro Sánchez, Adriana María
dc.date.accessioned2020-08-08T13:51:22Z
dc.date.available2020-08-08T13:51:22Z
dc.date.issued2020-06-10
dc.identifier.urihttp://hdl.handle.net/10818/42743
dc.description156 páginases_CO
dc.description.abstractEl fruto de feijoa (Acca sellowiana Berg.) es conocido por poseer varias bioactividades, tales como la capacidad antioxidante, antimicrobiana, antifúngica, anti-inflamatoria y anticancerígena. En Colombia, la feijoa se cultiva principalmente en la zona Cundiboyacense con producción todo el año. Sin embargo, existen periodos de sobre-oferta y se presentan pérdidas poscosecha. Este contexto sugiere alternativas de aprovechamiento del fruto y el secado constituye una de ellas para la adición de valor y extensión de vida útil, obteniendo productos de interés para la industria alimentaria y farmacéutica. Dos tecnologías de secado con potencial aplicación en feijoa y pulpa de feijoa son el secado convectivo y el secado por ventana refractiva. La primera, representa la tecnología más utilizada a nivel industrial y la segunda es representante de las tecnologías de secado de última generación con potencial de uso en productos frutícolas. En el diseño de procesos y equipos de secado, el modelado matemático y la simulación son una herramienta útil para estudiar los fenómenos de transporte que allí se presentan, así como para establecer las mejores condiciones de operación y determinar el efecto del procesamiento sobre la productividad de la operación, las características fisicoquímicas y la bioactividad. En esta investigación, se estudió el efecto de los principales parámetros operativos del secado convectivo y por ventana refractiva sobre la cinética de secado, parámetros de productividad de secadores, las características fisicoquímicas, polifenoles totales, capacidad antioxidante y actividad antiinflamatoria de feijoa en fruto y en pulpa.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectFeijoa -- Investigacioneses_CO
dc.subjectSecadoes_CO
dc.subjectInnovaciones tecnológicases_CO
dc.subjectIndustrias agropecuariases_CO
dc.titleConvective and refractance window drying of Feijoa (Acca sellowiana Berg) variety Mammoth : effect on quality and bioactivityen
dc.typedoctoral thesises_CO
dc.publisher.programes_CO
dc.publisher.departmentes_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dcterms.referencesA.O.A.C,1990. Official methods of analysis. 15th ed. Arlington, VA: Association of Official Analytical Chemists, Washington, DCeng
dcterms.referencesAl-Muhtaseb, A.H., McMinn, W.A.M., Magee, T.R.A., 2002. Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 80, 118–128.eng
dcterms.referencesAprajeeta, J., Gopirajah, R., Anandharamakrishnan, C., 2015. Shrinkage and porosity effects on heat and mass transfer during potato drying. J. Food Eng. 144, 119–128.eng
dcterms.referencesBezerra, C.V., Meller Da Silva, L.H., Corrêa, D.F., Rodrigues, A., 2015. A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. Int. J. Heat Mass Transf. 85, 750–755.eng
dcterms.referencesCabrera, E., Sanjuán, N., Panadés, G., Cruz, L., 2016. Influence of osmotic pretreatment on the convective drying of guava. Int. Food Res. J. 23, 1623–1628.eng
dcterms.referencesCastro, A.M., Mayorga, E.Y., Moreno, F.L., 2018. Mathematical modelling of convective drying of fruits: A review. J. Food Eng. 223, 152–167.eng
dcterms.referencesChakraborty, S., Bora, J., Khobragade, C., 2015. Application of artificial neural network for the modeling of thin- layer drying process of raw banana in refractance window dryer. Green Farming 6, 1–4.eng
dcterms.referencesChayjan, R.A., Kaveh, M., Khayati, S., 2017. Modeling some thermal and physical characteristics of terebinth fruit under semi industrial continuous drying. J. Food Meas. Charact. 11, 12–23.eng
dcterms.referencesCrank, J., 1975. the Mathematics of Diffusion. 2nd Ed. Oxford Univ. Press. UK.eng
dcterms.referencesDa Silva, W.P., Rodrigues, A.F., E Silva, C.,2015. Comparison between continuous and intermittent drying of whole bananas using empirical and diffusion models to describe the processes. J. Food Eng. 166, 230–236.eng
dcterms.referencesDarıcı, S., Şen, S., 2015. Experimental investigation of convective drying kinetics of kiwi under different conditions. Heat Mass Transf. 51, 1167–1176.eng
dcterms.referencesDoymaz, I., 2013. Experimental study on drying of pear slices in a convective dryer. Int. J. Food Sci. Technol. 48, 1909–1915.eng
dcterms.referencesDurigon, A., Parisotto, E.I.B., Carciofi, B.A.M., Laurindo, J.B., 2018. Heat transfer and drying kinetics of tomato pulp processed by cast-tape drying. Dry. Technol. 36, 160–168.eng
dcterms.referencesErtekin, C., Firat, M.Z., 2015. A comprehensive review of thin-layer drying models used in agricultural products. Crit. Rev. Food Sci. Nutr. 57, 701–717.eng
dcterms.referencesGhanem, T.H., 2010. Modeling of refractance window film dryer for liquids. Process Eng. 27, 676–687.eng
dcterms.referencesHawlader, M.N.A., Perera, C.O., Tian, M., Yeo, K.L., 2010. Drying of Guava and Papaya: Impact of Different Drying Methods.eng
dcterms.referencesHoruz, E., Bozkurt, H., Karataş, H., Maskan, M., 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chem. 230, 295–305.eng
dcterms.referencesKaveh, M., Amiri Chayjan, R., Esna-Ashari, M., 2015. Thermal and physical properties modelling of terebinth fruit (Pistacia atlantica L.) under solar drying. Res. Agric. Eng. 61, 150–161.eng
dcterms.referencesLang, K., McCune, T., Steinberg, M., 1981. Aproximity equilibration cell for determination of sorption isotherm. J. Food Sci. 46, 936–938.eng
dcterms.referencesModi, S.K., Durgaprasad, B., Basavaraj, M., 2015. Experimental Study on Drying Kinetics of Guava Fruit by Thin Layer Drying 9, 74–80.eng
dcterms.referencesNoshad, M., Mohebbi, M., Shahidi, F., Mortazavi, S.A., 2012. Effect of osmosis and ultrasound pretreatment on the moisture adsorption isotherms of quince. Food Bioprod. Process. 90, 266–274.eng
dcterms.referencesOchoa-Martínez, C.I., Quintero, P.T., Ayala, A.,2012. Drying characteristics of drying mango by Refractance Window. J. Food Eng. 109, 69–75.eng
dcterms.referencesOcoro, M., Ayala, A., 2013. Influence of thickness on the drying of papaya puree (carica papaya) through Refractance Window TM technology. Dyna. Rev. la Fac. Minas la Univ. Nac. Colomb. Sede Medellín 80, 147–154.eng
dcterms.referencesOnwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M., Abdan, K., 2016. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 15, 599–618.eng
dcterms.referencesOrtiz-Jerez, M.J., Gulati, T., Datta, A.K., Ochoa-Martínez, C.I., 2015. Quantitative understanding of Refractance WindowTM drying. Food Bioprod. Process. 95, 237–253.eng
dcterms.referencesOwo, H., Adebowale, A., Sobukola, O., Obadina, A., Kajihausa, O., Adegunwa, M., Sanni, L., Tomlins, K., 2016. Adsorption isotherms and thermodynamics properties of water yam flour. Qual. Assur. Saf. Crop. Foods 9, 221–227.eng
dcterms.referencesParra-Coronado, A., Fischer, G., Camacho-Tamayo, J., 2015. Development and quality of pineapple guava fruit in two locations with different altitudes in. Bragantia Campinas 74, 359–366.eng
dcterms.referencesPumacahua-ramos, A., Limaylla-guerrero, K.M., Telis-rome-, J., 2017. Isotermas y calor isostérico de adsorción de agua de almidón de quinua 15, 95–104.eng
dcterms.referencesRaghavi, L.M., Moses, J.A., Anandharamakrishnan, C., 2018. Refractance window drying of foods: A review. J. Food Eng. 222, 267–275.eng
dcterms.referencesRodriguez-Bernal, J.M., Flores-Andrade, E., Lizarazo-Morales, C., Bonilla, E., Pascual-Pineda, L.A., Gutierréz-López, G., Quintanilla-Carvajal, M.X., 2015. Food and Bioproducts Processing Moisture adsorption isotherms of the borojó fruit ( Borojoa patinoi . Cuatrecasas ) and gum. Food Bioprod. Process. 94, 187–198.eng
dcterms.referencesRuhanian, S., Movagharnejad, K., 2015. Mathematical modeling and experimental analysis of potato thin-layer drying in an infraredconvective dryer. Eng. Agric. Environ. Food 9, 84–91.eng
dcterms.referencesSingh, R. Paul and Heldman, D.R., 2009. Introduction to food engineering (4th ed.). London: Elsevier Publishing, 375–376.eng
dcterms.referencesTao, Y., Wu, Y., Yang, J., Jiang, N., Wang, Q., Chu, D.T., Han, Y., Zhou, J., 2018. Thermodynamic sorption properties, water plasticizing effect and particle characteristics of blueberry powders produced from juices, fruits and pomaces. Powder Technol. 323, 208–218.eng
dcterms.referencesTzempelikos, D.A., Vouros, A.P., Bardakas, A. V., Filios, A.E., Margaris, D.P., 2015. Experimental study on convective drying of quince slices and evaluation of tin-layer drying models. Eng. Agric. Environ. Food 1–9.eng
dcterms.referencesWatson, P.F., Petrie, A., 2010. Method agreement analysis: A review of correct methodology. Theriogenology 73, 1167–1179.eng
dcterms.referencesWeston, R.J., 2010. Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): A review. Food Chem. 121, 923–926.eng
dcterms.referencesZotarelli, M.F., Carciofi, B.A.M., Laurindo, J.B., 2015. Effect of process variables on the drying rate of mango pulp by Refractance Window. Food Res. Int. 69, 410–417.eng
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International