Mostrar el registro sencillo del ítem

dc.contributor.advisorCobo Ángel, Martha Isabel
dc.contributor.authorProano González, Laura Melisa
dc.date.accessioned2020-06-01T16:32:14Z
dc.date.available2020-06-01T16:32:14Z
dc.date.issued2020-04-22
dc.identifier.urihttp://hdl.handle.net/10818/41386
dc.description56 páginas: ilustracioneses_CO
dc.description.abstractIn the cement industry, CO2 emissions mainly proceed from limestone calcination and fossil fuel combustion in clinker production, which represents about 8% of the worldwide CO2 emissions. To avoid an increase of 2 °C in global temperature compare with pre-industrial global temperature proposed in the COP21 agreement in 2015, cement industry should reduce CO2 emissions 24% below current levels. Thus, the purpose of this study was to evaluate an indirect carbonation CO2 capture and utilization technology for CO2 emissions abatement in the clinker production. The indirect carbonation process was evaluated using different hydroxides (Na, Ba and Ca) as absorbent precursors. Through technical evaluation, carbonation process using Na and Ba hydroxides resulted viable between 50 to 70 °C, with CO2 capture efficiencies of 98 and 65%, respectively. Contrary, Ca-based process presented an efficiency of 0.5% due to the low solubility of Ca(OH)2 in water, which results in technical infeasibility. For Na and Ba processes, an estimated cost of CO2 capture was assessed at 65 and 140 USD/t CO2, respectively. Moreover, technical and economic evaluation was integrated through a system dynamics model; which was developed to appraise the effect of economic policies and market conditions in CO2 capture economic impact on a cement plant and CO2 emissions reduction. System dynamics results showed that the implementation of a CO2 taxing policy, with CO2 tax between 20 and 80 USD/t CO2 emitted, will encourage the implementation of CO2 capture technologies to reduce emissions by 24% in a cement plant.eng
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceinstname:Universidad de La Sabanaes_CO
dc.sourcereponame:Intellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectDinámicaes_CO
dc.subjectIndustrias del cementoes_CO
dc.subjectAnálisis tecnoeconómicoes_CO
dc.subjectInnovaciones tecnológicases_CO
dc.titleTechno-economic evaluation of carbonation as CO2 capture and utilization technology in the cement industryes_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local277052
dc.identifier.localTE10670
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesM.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: A review, Energy. 46 (2012) 431–441. doi:10.1016/j.energy.2012.08.006.eng
dcterms.referencesI. International Energy Agency, World Business Council For Sustainable Development (WBCSD), Technology Roadmap - Low-Carbon Transition in the Cement Industry, 2016. www.wbcsdcement.org. (accessed November 26, 2018).eng
dcterms.referencesA. Rolfe, Y. Huang, M. Haaf, A. Pita, S. Rezvani, A. Dave, N.J. Hewitt, Technical and environmental study of calcium carbonate looping versus oxy-fuel options for low CO2 emission cement plants, Int. J. Greenh. Gas Control. 75 (2018) 85–97. doi:10.1016/J.IJGGC.2018.05.020.eng
dcterms.referencesS. Gardarsdottir, E. De Lena, M. Romano, S. Roussanaly, M. Voldsund, J.-F. PérezCalvo, D. Berstad, C. Fu, R. Anantharaman, D. Sutter, M. Gazzani, M. Mazzotti, G. Cinti, S.O. Gardarsdottir, E. De Lena, M. Romano, S. Roussanaly, M. Voldsund, J.-F. Pérez-Calvo, D. Berstad, C. Fu, R. Anantharaman, D. Sutter, M. Gazzani, M. Mazzotti, G. Cinti, Comparison of Technologies for CO2 Capture from Cement Production—Part 2: Cost Analysis, Energies. 12 (2019) 542. doi:10.3390/en12030542eng
dcterms.referencesM. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des. 89 (2011) 1609–1624. doi:10.1016/J.CHERD.2010.11.005eng
dcterms.referencesJ. Luis Míguez, J. Porteiro, R. Pérez-Orozco, D. Patiño, S. Rodríguez, Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity, Appl. Energy. 211 (2018) 1282–1296. doi:10.1016/J.APENERGY.2017.11.107eng
dcterms.referencesC.Y. Chiang, D.W. Lee, H.S. Liu, Carbon dioxide capture by sodium hydroxideglycerol aqueous solution in a rotating packed bed, J. Taiwan Inst. Chem. Eng. 72 (2017) 29–36. doi:10.1016/j.jtice.2017.01.023.eng
dcterms.referencesS.-M. Shih, C.-S. Ho, Y.-S. Song, J.-P. Lin, Kinetics of the Reaction of Ca(OH) 2 with CO 2 at Low Temperature, Ind. Eng. Chem. Res. 38 (1999) 1316–1322. doi:10.1021/ie980508zeng
dcterms.referencesE. Worrell, L. Price, N. Martin, C. Hendriks, L.O. Meida, CARBON DIOXIDE MISSIONS FROM THE GLOBAL CEMENT INDUSTRY, Annu. Rev. Energy Environ. 26 (2001) 303–329. doi:10.1146/annurev.energy.26.1.303.eng
dcterms.referencesF. Schorcht, I. Kourti, B. Maria Scalet, S. Roudier, L. Delgado Sancho, Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, 2013. doi:10.2788/12850.eng
dcterms.referencesS. Campanari, G. Cinti, S. Consonni, K. Feiger, M. Gatti, H. Hoppe, I. Martínez, M. Romano, M. Spinelli, M. Voldsund, D4.1 Design and performance of CEMCAP cement plant without CO2 capture, 2016.eng
dcterms.referencesdel P. Strother, Manufacture of Portland Cement, in: Lea’s Chem. Cem. Concr. (Fifth Ed., Butterworth-Heinemann, 2019: pp. 31–56. doi:10.1016/B978-0-08-100773- 0.00002-2.eng
dcterms.referencesM. Voldsun, R. Anantharaman, D. Bestad, G. Cinti, E. De Lena, M. Gatti, M. Gazzani, H. Hoppe, I. Martínez, J. Garcia, S. Monteiro, M. Romano, S. Roussanaly, E. Schols, M. Spinelli, S. Stroset, P. van Os, CEMCAP preliminary framework for comparative techno- economic analysis of CO2 capture from cement plants, 2015.eng
dcterms.referencesA.A. Olajire, A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng. 109 (2013) 364–392. doi:10.1016/J.PETROL.2013.03.013.eng
dcterms.referencesA. Sanna, L. Steel, M.M. Maroto-Valer, Carbon dioxide sequestration using NaHSO4 and NaOH: A dissolution and carbonation optimisation study, J. Environ. Manage. 189 (2017) 84–97. doi:10.1016/j.jenvman.2016.12.029eng
dcterms.referencesY. Tavan, S.H. Hosseini, A novel rate of the reaction between NaOH with CO2 at low temperature in spray dryer, Petroleum. 3 (2017) 51–55. doi:10.1016/j.petlm.2016.11.006.eng
dcterms.referencesS. Park, H. Jo, D. Kang, J. Park, A study of CO2 precipitation method considering an ionic CO2 and Ca(OH)2 slurry, Energy. 75 (2014) 624–629. doi:10.1016/j.energy.2014.08.036.eng
dcterms.referencesS. Park, J. Min, M.-G. Lee, H. Jo, J. Park, Characteristics of CO2 fixation by chemical conversion to carbonate salts, Chem. Eng. J. 231 (2013) 287–293 doi:10.1016/j.cej.2013.07.032.eng
dcterms.referencesS. Teir, Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags, 2008.eng
dcterms.referencesS. Park, M.G. Lee, J. Park, CO2 (carbon dioxide) fixation by applying new chemical absorption-precipitation methods, Energy. 59 (2013) 737–742. doi:10.1016/j.energy.2013.07.057eng
dcterms.referencesA. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev. 43 (2014) 8049– 8080. doi:10.1039/C4CS00035Heng
dcterms.referencesW.J.J. Huijgen, R.N.J. Comans, G.-J. Witkamp, Cost evaluation of CO2 sequestration by aqueous mineral carbonation, Energy Convers. Manag. 48 (2007) 1923–1935. doi:10.1016/J.ENCONMAN.2007.01.035.eng
dcterms.referencesP.K. Naraharisetti, T.Y. Yeo, J. Bu, New classification of CO2 mineralization processes and economic evaluation, Renew. Sustain. Energy Rev. 99 (2019) 220–233.eng
dcterms.referencesSkyonic Corporation, Enbridge Inc., ConocoPhillips, Skyonic Secures $ 12.5M to Develop SkyCycle TM Technology, (2014) 2. https://www.marketwatch.com/pressrelease/skyonic-secures-125m-to-develop-skycycle-technology-2014-05-22 (accessed February 17, 2019).eng
dcterms.referencesE. De Lena, M. Spinelli, M. Gatti, R. Scaccabarozzi, S. Campanari, S. Consonni, G. Cinti, M.C. Romano, Techno-economic analysis of calcium looping processes for low CO2 emission cement plants, Int. J. Greenh. Gas Control. 82 (2019) 244–260. doi:10.1016/J.IJGGC.2019.01.005.eng
dcterms.referencesR.S. Norhasyima, T.M.I. Mahlia, Advances in CO₂ utilization technology: A patent landscape review, J. CO2 Util. 26 (2018) 323–335. doi:10.1016/J.JCOU.2018.05.022.eng
dcterms.referencesM. Krau, R. Rzehak, Reactive absorption of CO2 in NaOH: Detailed study of enhancement factor models, Chem. Eng. Sci. 166 (2017) 193–209. doi:10.1016/j.ces.2017.03.029eng
dcterms.referencesC. Arenas, L. Ricaurte, M. Figueredo, M. Cobo, CO2 capture via barium carbonate formation after its absorption with ammonia in a pilot scale column, Chem. Eng. J. 254 (2014) 220–229. doi:10.1016/j.cej.2014.05.108.eng
dcterms.referencesT. Wang, S. Garcia, H. Huang, R. Guo, X. Hu, M. Fang, Z. Luo, M.M. Maroto-Valer, Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment, J. Clean. Prod. (2018). doi:10.1016/J.JCLEPRO.2018.11.215eng
dcterms.referencesS. Teir, S. Eloneva, R. Zevenhoven, Production of precipitated calcium carbonate from calcium silicates and carbon dioxide, Energy Convers. Manag. 46 (2005) 2954– 2979. doi:10.1016/j.enconman.2005.02.009.eng
dcterms.referencesF. Wang, D. Dreisinger, M. Jarvis, T. Hitchins, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration, Miner. Eng. 131 (2019) 185–197. doi:10.1016/J.MINENG.2018.11.024.eng
dcterms.referencesS. Teir, R. Kuusik, C.-J. Fogelholm, R. Zevenhoven, Production of magnesium carbonates from serpentinite for long-term storage of CO2, (2007). doi:10.1016/j.minpro.2007.08.007.eng
dcterms.referencesM.C. Dichicco, S. Laurita, M. Paternoster, G. Rizzo, R. Sinisi, G. Mongelli, Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study, Energy Procedia. 76 (2015) 477–486. doi:10.1016/j.egypro.2015.07.888eng
dcterms.referencesS. Eloneva, A. Said, C.-J. Fogelholm, R. Zevenhoven, Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate, Appl. Energy. 90 (2012) 329–334. doi:10.1016/j.apenergy.2011.05.045eng
dcterms.referencesS. Eloneva, E.-M. Puheloinen, J. Kanerva, A. Ekroos, R. Zevenhoven, C.-J. Fogelholm, Co-utilisation of CO2 and steelmaking slags for production of pure CaCO3 – legislative issues, J. Clean. Prod. 18 (2010) 1833–1839. doi:10.1016/J.JCLEPRO.2010.07.026eng
dcterms.referencesS. Eloneva, S. Teir, J. Salminen, C.-J. Fogelholm, R. Zevenhoven, Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy. 33 (2008) 1461– 1467. doi:10.1016/j.energy.2008.05.003.eng
dcterms.referencesR. Zevenhoven, S. Eloneva, S. Teir, Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage, Catal. Today. 115 (2006) 73–79. doi:10.1016/j.cattod.2006.02.020.eng
dcterms.referencesJ.H. Lee, J.H. Lee, I.K. Park, C.H. Lee, Techno-economic and environmental evaluation of CO2 mineralization technology based on bench-scale experiments, J. CO2 Util. 26 (2018) 522–536. doi:10.1016/J.JCOU.2018.06.007.eng
dcterms.referencesCapitol Aggregates, Sustainability-Skyonic, (n.d.). http://www.capitolaggregates.com/s/Sustainability-Skyonic (accessed November 27, 2018).eng
dcterms.referencesE.S. Rubin, Understanding the pitfalls of CCS cost estimates, Int. J. Greenh. Gas Control. 10 (2012) 181–190. doi:10.1016/j.ijggc.2012.06.004eng
dcterms.referencesNational Research Council, Modeling the Economics of Greenhouse Gas Mitigation: Summary of a Workshop, 2013. papers2://publication/uuid/097BFD81-C6F0-4766- AD96-8BB63FD0E4B7.eng
dcterms.referencesE. Committee, I.E.A.G.H.G. Programme, O. Agent, I.E. Agency, Criteria for Technical and Economic Assessment of Plants With Low CO₂ Emissions, Energy. (2009).eng
dcterms.referencesE.S. Rubin, C. Short, G. Booras, J. Davison, C. Ekstrom, M. Matuszewski, S. McCoy, A proposed methodology for CO2 capture and storage cost estimates, Int. J. Greenh. Gas Control. 17 (2013) 488–503. doi:10.1016/j.ijggc.2013.06.004.eng
dcterms.referencesH. Ali, N.H. Eldrup, F. Normann, R. Skagestad, L.E. Øi, Cost Estimation of CO2 Absorption Plants for CO2 Mitigation – Method and Assumptions, Int. J. Greenh. Gas Control. 88 (2019) 10–23. doi:10.1016/j.ijggc.2019.05.028.eng
dcterms.referencesZ. Xie, B. Yan, J.H. Lee, Q. Wu, X. Li, B. Zhao, D. Su, L. Zhang, J.G. Chen, Effects of oxide supports on the CO 2 reforming of ethane over Pt-Ni bimetallic catalysts, Appl. Catal. B Environ. (2019) 376–388. doi:10.1016/j.apcatb.2018.12.070eng
dcterms.referencesN. Ansari, A. Seifi, A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry, Energy. 43 (2012) 334–343. doi:10.1016/j.energy.2012.04.020eng
dcterms.referencesA. Ford, System Dynamics Models of Environment, Energy and Climate Change, in: R.A. Meyers (Ed.), Encycl. Complex. Syst. Sci., Springer New York, New York, NY, 2009: pp. 9014–9034. doi:10.1007/978-0-387-30440-3_541eng
dcterms.referencesZ. Jokar, A. Mokhtar, Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development- A system dynamics approach, J. Clean. Prod. 201 (2018) 142–155. doi:10.1016/J.JCLEPRO.2018.07.286.eng
dcterms.referencesS. Anand, P. Vrat, R.P.P. Dahiya, Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry, J. Environ. Manage. 79 (2006) 383–398. doi:10.1016/j.jenvman.2005.08.007.eng
dcterms.referencesN. Ghaffarzadegan, A.T. Tajrishi, Economic transition management in a commodity market: the case of the Iranian cement industry, Syst. Dyn. Rev. 26 (2010) 139–161. doi:10.1002/sdr.438.eng
dcterms.referencesE. Suryani, S.Y. Chou, R. Hartono, C.H. Chen, Demand scenario analysis and planned capacity expansion: A system dynamics framework, Simul. Model. Pract. Theory. 18 (2010) 732–751. doi:10.1016/j.simpat.2010.01.013eng
dcterms.referencesT. He-feng, C. Yuan-sheng, Q. Wei-shuang, L. Ya, System Dynamic Scenarios Analysis of CO2 Emissions of China’s Cement Industry, China Soft Sci. 03 (2010). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGRK201003007.htmeng
dcterms.referencesN. Ansari, A. Seifi, A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios, Energy Policy. 58 (2013) 75–89. doi:10.1016/j.enpol.2013.02.042.eng
dcterms.referencesM. Nehdi, R. Rehan, S.P. Simonovic, System dynamics model for sustainable cement and concrete: Novel tool for policy analysis, ACI Mater. J. 101 (2004) 216–225. doi:10.14359/13117eng
dcterms.referencesJ. Vargas, A. Halog, Effective carbon emission reductions from using upgraded fly ash in the cement industry, J. Clean. Prod. 103 (2015) 948–959. doi:10.1016/J.JCLEPRO.2015.04.136eng
dcterms.referencesEuropean cement research academy, Cement Sustainability Initiative, Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead, Revision 2017, 2009eng
dcterms.referencesL. Hanle, P. Maldonado, O. Eiichi, M. Tichy, H. G. van oss, A. Victor, G. Edwards, M. Miller, MINERAL INDUSTRY EMISSIONS, in: 2006 IPCC Guidel. Natl. Greenh. Gas Invent., 2006. https://www.ipccnggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_2_Ch2_Mineral_Industry.pdf (accessed November 29, 2018).eng
dcterms.referencesC. Nwaoha, M. Beaulieu, P. Tontiwachwuthikul, M.D. Gibson, Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend, Int. J. Greenh. Gas Control. 78 (2018) 400–412. doi:10.1016/J.IJGGC.2018.07.015.eng
dcterms.referencesL. Proaño, M. Cobo, A. Sarmiento, M. Figueredo, Techno-economic analysis of indirect carbonation CO2 capture and utilization in a cement industry: Aspen Plus simulations results and System Dynamics model results, (2019). doi:10.17632/m5z5b5zdcw.1.eng
dcterms.referencesG. Yincheng, N. Zhenqi, L. Wenyi, Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column, Energy Procedia. 4 (2011) 512–518. doi:10.1016/j.egypro.2011.01.082.eng
dcterms.referencesS. Park, J.-H. Bang, K. Song, C.W. Jeon, J. Park, Barium carbonate precipitation as a method to fix and utilize carbon dioxide, Chem. Eng. J. 284 (2016) 1251–1258. doi:10.1016/j.cej.2015.09.059.eng
dcterms.referencesZ. He, X. Zhu, J. Wang, M. Mu, Y. Wang, Comparison of CO2 emissions from OPC and recycled cement production, Constr. Build. Mater. 211 (2019) 965–973. doi:10.1016/j.conbuildmat.2019.03.289.eng
dcterms.referencesT. Hosseini, N. Haque, C. Selomulya, L. Zhang, Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride - Process simulation and techno-economic analysis, Appl. Energy. 175 (2016) 54–68. doi:10.1016/j.apenergy.2016.04.093.eng
dcterms.referencesP. Christensen, D.J. Burton, Cost Estimate Classification System – As Applied in Engineering , Procurement , and Construction for the Process Industries, Construction. (2005) 10. doi:Recommended Practice No. 18R-97eng
dcterms.referencesR.C. Bennett, Crystallizer selection and design, Handb. Ind. Cryst. (2002) 115–140. doi:10.1016/B978-075067012-8/50007-0.eng
dcterms.referencesA.T. Balaban, Process Design Principles:  Synthesis, Analysis, and Evaluation By Warren D. Seider, J. D. Seader, and Daniel R. Lewin. Wiley:  New York. 1999. 824 pp. ISBN 0-471-24312-4. $99.95., J. Chem. Inf. Comput. Sci. 40 (2000) 882–883. doi:10.1021/ci000347l.eng
dcterms.referencesSolid – Liquid Separation – Thickening, Miner. Process. Des. Oper. (2016) 471–506. doi:10.1016/B978-0-444-63589-1.00014-9.eng
dcterms.referencesS.M. Glasgow, Crystallization, Ferment. Biochem. Eng. Handb. (2014) 309–318. doi:10.1016/B978-1-4557-2553-3.00015-5eng
dcterms.referencesECHEMI.com, Optimize the Global Chemical Resources - Echemi.com, (n.d.). https://www.echemi.com/ (accessed March 6, 2019)eng
dcterms.referencesM. Hitch, G.M. Dipple, Economic feasibility and sensitivity analysis of integrating industrial-scale mineral carbonation into mining operations, Miner. Eng. 39 (2012) 268–275. doi:10.1016/j.mineng.2012.07.007eng
dcterms.referencesDANE, Grey Cement Statistics, (n.d.). http://www.dane.gov.co/index.php/en/statistics-by-topic/construction/grey-cementstatistics (accessed November 30, 2018).eng
dcterms.referencesThe Cement Sustainability Initiative (CSI), Cement Production, (n.d.). https://www.wbcsdcement.org/index.php/about-cement/cement-production (accessed November 30, 2018).eng
dcterms.referencesJ.D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World (Book), Irwin/McGraw-Hill, Boston, 2000eng
dcterms.referencesResearch Reports World, Global Barium Carbonate Market 2017 2021, (2017). https://www.researchreportsworld.com/global-barium-carbonate-market-2017-2021- 11459466 (accessed May 21, 2019).eng
dcterms.referencesMarketWatch, By 2024, Sodium Bicarbonate Market to exceed $9bn, (2018). https://www.marketwatch.com/press-release/by-2024-sodium-bicarbonate-marketto-exceed-9bn-2018-09-10 (accessed May 21, 2019).eng
dcterms.referencesMarketWatch, Global Sodium Bicarbonate Market Report 2019 Competitive Landscape Trends And Opportunities, (2019). https://www.industryresearch.co/global-sodium-bicarbonate-market-report-2019- competitive-landscape-trends-and-opportunities-14099956 (accessed May 21, 2019).eng
dcterms.referencesM.M.F. Hasan, E.L. First, F. Boukouvala, C.A. Floudas, A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU, Comput. Chem. Eng. 81 (2015) 2–21. doi:10.1016/j.compchemeng.2015.04.034.eng
dcterms.referencesIPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge and New York, 2005eng
dcterms.referencesOECD, Effective Carbon Rates 2018: Pricing Carbon Emissions Through Taxes and Emissions Trading, OECD Publishing, Paris, 2018. doi:10.1787/9789264305304-en.eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International