Mostrar el registro sencillo del ítem

dc.contributor.advisorTello Camacho, Edisson
dc.contributor.advisorAcosta González, Alejandro
dc.contributor.authorConde Martínez, Natalia E.
dc.date.accessioned9/24/2019 15:14
dc.date.available9/24/2019 15:14
dc.date.issued2019-08-08
dc.identifier.urihttp://hdl.handle.net/10818/37414
dc.description92 páginases_CO
dc.description.abstractThe objective of this research was to establish the bioprospecting potential of the cultivable bacteria isolated from the Manaure Solar Saltern in La Guajira, Colombia. To achieve this, a strategy of mixed cultures was implemented to evaluate the cytotoxic and antibacterial activity of their crude extracts. The best bioactive mixed culture was selected, and their isolates were obtained and characterized. The results from the biological assays with the crude extracts of the isolates grown individually led to establish that the halophilic bacterium Vibrio diabolicus A1SM3 was responsible for the biological activity of the mixed culture. From the bioguided fractionation of this extract and its analysis by HPLC-MS/MS and NMR, the isotrisindoline was identified as the compound responsible for the cytotoxic and antibacterial activity. After that, variations on the carbon and nitrogen source, and the salinity of the medium were made to determine how they affected the isotrisindoline production. The MS/MS data obtained from the crude extracts of these cultures were analyzed through molecular networking in order to establish the effect of these variations. In addition to this, it was possible to identify that this microorganism produces polyhydroxybutyrates, a biopolymer widely produced and accumulated by Vibrio species with great applications in the plastics industry. Finally, by sequencing the genome of Vibrio diabolicus A1SM3, the biosynthetic gene cluster associated with the production of this biopolymer was annotated.en
dc.formatapplication/pdfes_CO
dc.language.isospaes_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectVibrio diabolicuses_CO
dc.subjectEstructura moleculares_CO
dc.subjectSalinas -- (Manaure, Guajira, Colombia)es_CO
dc.subjectPolihidroxibutiratoes_CO
dc.titleBioprospecting study of cultivable prokaryotic fraction from Manaure solar saltern, La Guajira, Colombiaen
dc.typedoctoral thesises_CO
dc.identifier.local273930
dc.identifier.localTE10310
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dcterms.referencesBell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57(11), 1587–1590.en
dcterms.referencesCragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695.en
dcterms.referencesDasSarma, S., & DasSarma, P. (2012). Halophiles. ELS. John Wiley & Sons, Ltd: Chichester, 1–11.en
dcterms.referencesGanapathy, K., Ramasamy, R., & Dhinakarasamy, I. (2018). Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 111, 102–108.en
dcterms.referencesKobayashi, M. M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Marine natural products. XXXIV. 1) Trisindole, a new antibiotic indole trimer, produced by a Bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 42(12), 2449–2451.en
dcterms.referencesMansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs, 9, 1440–1468.en
dcterms.referencesMüller, V., & Köcher, S. (2011). Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In K. Horikoshi (Ed.), Extremophiles Handbook (pp. 384–400). Springer.en
dcterms.referencesNewman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.en
dcterms.referencesNewman, D. J., & Giddings, L.-A. (2014). Natural products as leads to antitumor drugs. Phytochemistry Reviews, 13(1), 123–137.en
dcterms.referencesPettit, R. K. (2009). Mixed fermentation for natural product drug discovery. Applied Microbiology and Biotechnology, 83(1), 19–25.en
dcterms.referencesRichter, M., & Rosselló-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131.en
dcterms.referencesSchöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., … Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17(3), 247–253.en
dcterms.referencesThompson, F., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431.en
dcterms.referencesTrigui, H., Masmoudi, S., Brochier-Armanet, C., Maalej, S., & Dukan, S. (2011). Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Canadian Journal of Microbiology, 57, 923–933.en
dcterms.referencesVeluri, R., Oka, I., Wagner-dobler, I., & Laatsch, H. (2003). New indole alkaloids from the north sea bacterium Vibrio parahaemolyticus. Journal of Natural Products, 66, 1520–1523.en
dcterms.referencesWang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.en
dcterms.referencesBell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57(11), 1587–1590.eng
dcterms.referencesCragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695.eng
dcterms.referencesDasSarma, S., & DasSarma, P. (2012). Halophiles. ELS. John Wiley & Sons, Ltd: Chichester, 1–11.eng
dcterms.referencesGanapathy, K., Ramasamy, R., & Dhinakarasamy, I. (2018). Polyhydroxybutyrate production from marine source and its application. International Journal of Biological Macromolecules, 111, 102–108.eng
dcterms.referencesKobayashi, M. M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Marine natural products. XXXIV. 1) Trisindole, a new antibiotic indole trimer, produced by a Bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull., 42(12), 2449–2451.eng
dcterms.referencesMansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs, 9, 1440–1468.eng
dcterms.referencesMüller, V., & Köcher, S. (2011). Adapting to changing salinities: biochemistry, genetics, and regulation in the moderately halophilic bacterium Halobacillus halophilus. In K. Horikoshi (Ed.), Extremophiles Handbook (pp. 384–400). Springer.eng
dcterms.referencesNewman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.eng
dcterms.referencesNewman, D. J., & Giddings, L.-A. (2014). Natural products as leads to antitumor drugs. Phytochemistry Reviews, 13(1), 123–137.eng
dcterms.referencesPettit, R. K. (2009). Mixed fermentation for natural product drug discovery. Applied Microbiology and Biotechnology, 83(1), 19–25.eng
dcterms.referencesRichter, M., & Rosselló-Mora, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131.eng
dcterms.referencesSchöner, T. A., Gassel, S., Osawa, A., Tobias, N. J., Okuno, Y., Sakakibara, Y., … Bode, H. B. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem, 17(3), 247–253.eng
dcterms.referencesThompson, F., Iida, T., & Swings, J. (2004). Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68(3), 403–431.eng
dcterms.referencesTrigui, H., Masmoudi, S., Brochier-Armanet, C., Maalej, S., & Dukan, S. (2011). Survival of extremely and moderately halophilic isolates of Tunisian solar salterns after UV-B or oxidative stress. Canadian Journal of Microbiology, 57, 923–933.eng
dcterms.referencesVeluri, R., Oka, I., Wagner-dobler, I., & Laatsch, H. (2003). New indole alkaloids from the north sea bacterium Vibrio parahaemolyticus. Journal of Natural Products, 66, 1520–1523.eng
dcterms.referencesWang, M., Carver, J. J., Phelan, V. V, Sanchez, L. M., Garg, N., Peng, Y., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 34(8), 828–837.eng
thesis.degree.disciplineFacultad de Ingenieríaes_CO
thesis.degree.levelDoctorado en Biocienciases_CO
thesis.degree.nameDoctor en Biocienciases_CO


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International