Mostrar el registro sencillo del ítem

dc.contributor.advisorCobo Ángel, Martha Isabel
dc.contributor.advisorFigueredo Medina, Manuel Alfredo
dc.contributor.authorBecerra Sánchez, Jorge Alonso
dc.date.accessioned2019-02-12T19:52:46Z
dc.date.available2019-02-12T19:52:46Z
dc.date.issued2018-03-02
dc.identifier.urihttp://hdl.handle.net/10818/34949
dc.description122 páginases_CO
dc.description.abstractThe crisis in the oil industry and its impact on the environment have led not only to the search of new sources of energy but also to the development of processes to obtain raw materials derived from this industry. Bioethanol is a compound that can be obtained from various renewable sources as biomass and could be used to produce energy and as a precursor for the synthesis of high value compounds such as light olefins in novel, efficient, and environment friendly technologies. Ethylene and propylene are compounds with high commercial value and are mostly produced from petroleum. The production of light olefins from bioethanol has recently attracted interest, as it can contribute to reducing pollution and boosting the development of the agricultural and chemical industries.es_CO
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherUniversidad de La Sabanaes_CO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectAlquenoses_CO
dc.subjectIndustria y comercio del petróleoes_CO
dc.subjectMedio ambientees_CO
dc.subjectRecursos energéticoses_CO
dc.subjectBioetanol -- Producciónes_CO
dc.titleOlefins production by bioethanol dehydration using hzsm-5 catalystes_CO
dc.typemasterThesises_CO
dc.publisher.programMaestría en Diseño y Gestión de Procesoses_CO
dc.publisher.departmentFacultad de Ingenieríaes_CO
dc.identifier.local268255
dc.identifier.localTE09550
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsrestrictedAccesses_CO
dc.creator.degreeMagíster en Diseño y Gestión de Procesoses_CO
dcterms.referencesH. Xin, X. Li, Y. Fang, X. Yi, W. Hu, Y. Chu, et al., Catalytic dehydration of ethanol over post-treated ZSM-5 zeolites, J. Catal. 312 (2014) 204–215.eng
dcterms.referencesAsocaña, Balance de producción mensual de caña, (2010). http://www.asocana.org/ (accessed October 21, 2015).eng
dcterms.referencesFederación Nacional de Biocombustibles, producción de alcohol carburante en el año 2014, (2015). http://www.fedebiocombustibles.com/v3/main-index.htm (accessed February 9, 2017).eng
dcterms.referencesG.P. Ortegón, F.M. Arboleda, L. Candela, K. Tamoh, J. Valdes-Abellan, Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia)., Sci. Total Environ. 539 (2016) 410–9.eng
dcterms.referencesO.J. Sánchez, C.A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks., Bioresour. Technol. 99 (2008) 5270–95.eng
dcterms.referencesR. Le Van Mao, T.M. Nguyen, G.P. McLaughlin, The bioethanol-to-ethylene (B.E.T.E.) process, Appl. Catal. 48 (1989) 265–277.eng
dcterms.referencesE. Derouane, Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite, J. Catal. 53 (1978) 40–55.eng
dcterms.referencesA.G. Gayubo, A.M. Tarrío, A.T. Aguayo, M. Olazar, J. Bilbao, Kinetic modeling of the transformation of aqueous ethanol into hydrocarbons on a HZSM-5 zeolite, Ind. Eng. Chem. Res. 40 (2001) 3467–3474.eng
dcterms.referencesD. Goto, Y. Harada, Y. Furumoto, A. Takahashi, T. Fujitani, Y. Oumi, et al., Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals, Appl. Catal. A Gen. 383 (2010) 89–95.eng
dcterms.referencesM. Klein, O. Griess, I.N. Pulidindi, N. Perkas, A. Gedanken, Bioethanol production from Ficus religiosa leaves using microwave irradiation., J. Environ. Manage. 177 (2016) 20–25.eng
dcterms.referencesT. Zavřel, H. Knoop, R. Steuer, P.R. Jones, J. Červený, M. Trtílek, A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry, Bioresour. Technol. 202 (2016) 142–151.eng
dcterms.referencesM. Eramo, Global ethylene market outlook: low cost feedstocks fuel the next wave of investmentsi in north America and China, (2013). https://www.ihs.com/index.html (accessed January 1, 2017).eng
dcterms.referencesCeresana, Market study: Propylene, (2014). http://www.ceresana.com/en (accessed February 9, 2017).eng
dcterms.referencesL. Kong, J. Li, Z. Zhao, Q. Liu, Q. Sun, J. Liu, et al., Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: The effect of MoOx dispersion, Appl. Catal. A Gen. 510 (2016) 84–97.eng
dcterms.referencesS. Matar, M. Mirbach, H. Tayim, Catalysis in petrochemical processes, 3rd ed., Kluwer Academic, Boston, 1989.eng
dcterms.referencesW.D. Seider, J.D. Seader, D.R. Lewin, Product & Process Design Primciples: Synthesis, Analysis and Evaluation, 3rd ed., Wiley, New Yersey, 2009.eng
dcterms.referencesT. Lehmann, A. Seidel-Morgenstern, Thermodynamic appraisal of the gas phase conversion of ethylene or ethanol to propylene, Chem. Eng. J. 242 (2014) 422–432.eng
dcterms.referencesM.M. Ludvig, H.E. Rautiainen, A. Powels, Modified Y-Zeolite/ZSM-5 catalyst for increased propylene production, 20150298107, Patent WO20150298107A1, Type A1, Class 585/653, 2015. https://www.google.com/patents/WO2014096267A1?cl=en (Accesed February 9, 2017).eng
dcterms.referencesP. Lanzafame, G. Centi, S. Perathoner, Evolving scenarios for biorefineries and the impact on catalysis, Catal. Today. 234 (2014) 2–12.eng
dcterms.referencesA.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, J. Bilbao, Kinetic model for the transformation of bioethanol into olefins over a HZSM-5 zeolite treated with alkali, Ind. Eng. Chem. Res. 49 (2010) 10836–10844.eng
dcterms.referencesA.T. Aguayo, A.G. Gayubo, A. Atutxa, B. Valle, J. Bilbao, Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons, Catal. Today. 107 (2005) 410–416.eng
dcterms.referencesA.T. Aguayo, A.G. Gayubo, A. Atutxa, M. Olazar, J. Bilbao, Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst, Ind. Eng. Chem. Res. 41 (2002) 4216–4224.eng
dcterms.referencesJ. Mathew, A. Konstantinos, R. Marie-Françoise, G.B. Marin, Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling, J. Catal. 330 (2015) 28–45.eng
dcterms.referencesG.P. Babu, R.S. Murthyy, V. Krishnan, Conversion of isoamyl alcohol over acid catalysts: Reaction dependence on nature of active centers, J. Catal. 166 (1997) 111–114.eng
dcterms.referencesS.-G. Yoon, J. Lee, S. Park, Heat integration analysis for an industrial ethylbenzene plant using pinch analysis, Appl. Therm. Eng. 27 (2007) 886–893.eng
dcterms.referencesU. Ali, E.O. Agbonghae, K.J. Hughes, D.B. Ingham, L. Ma, M. Pourkashanian, Techno-economic process design of a commercial-scale amine-based CO2 capture system for natural gas combined cycle power plant with exhaust gas recirculation, Appl. Therm. Eng. 103 (2016) 747–758.eng
dcterms.referencesG. Sobočan, P. Glavič, Optimization of ethylene process design, Comput. Aided Chem. Eng. 9 (2001) 529–534.eng
dcterms.referencesE. Tut, Performance assessment by simulation of a gas-recycle oxosynthesis plant with propylene recovery, Ind. Eng. Chem. Res. 50 (2011) 4545–4552.eng
dcterms.referencesS. Begum, M.G. Rasul, D. Akbar, A numerical investigation of municipal solid waste gasification using Aspen Plus, Procedia Eng. 90 (2014) 710–717.eng
dcterms.referencesG.S. Soave, Estimation of the critical constants of heavy hydrocarbons for their treatment by the Soave–Redlich–Kwong equation of state, Fluid Phase Equilib. 143 (1998) 29–39.eng
dcterms.referencesJ.M. Smith, C. Hendrick, V. Ness, M. Abbott, Introduction to chemical engineering thermodynamics, 7th ed., McGraw-Hill, Michigan, 2005.eng
dcterms.referencesI. Adeyemi, I. Janajreh, Modeling of the entrained flow gasification: Kinetics-based ASPEN Plus model, Renew. Energy. 82 (2014) 77–84.eng
dcterms.referencesN. Sanchez, R.Y. Ruiz, B. Cifuentes, M. Cobo, Hydrogen from glucose: A combined study of glucose fermentation, bioethanol purification, and catalytic steam reforming, Int. J. Hydrogen Energy. (2016) 5640-5651.eng
dcterms.referencesM.M. Trubyanov, G.M. Mochalov, V.M. Vorotyntsev, S.S. Suvorov, High-pressure distillation: Simultaneous impact of pressure, temperature and loading on separation performance during distillation of high-purity gases in high-performance randomly-packed columns, Sep. Purif. Technol. 135 (2014) 117–126.eng
dcterms.referencesAmerican Association of Cost Engineers, (2015). http://www.aacei.org/ (accessed February 9, 2017).eng
dcterms.referencesWorld Bank, (2015). http://www.worldbank.org/ (accessed February 9, 2017).eng
dcterms.referencesP.C. Wankat, Separation process engineering, 3rd Ed., Prentice Hall, Boston, 2012.eng
dcterms.referencesR. Turton, R. Bailie, W. Whiting, J. Shaeiwitz, D. Bhattacharyya, Analysis, synthesis, and design of chemical processes, 4th Ed., Prentice Hall, Michigan, 2013.eng
dcterms.referencesA.T. Aguayo, A.G. Gayubo, A.M. Tarrío, A. Atutza, J. Bilbao, Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM-5 zeolite, J. Chem. Technol. Biotechnol. 77 (2002) 211–216.eng
dcterms.referencesA.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, J. Bilbao, Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH, Appl. Catal. B Environ. 97 (2010) 299–306.eng
dcterms.referencesA.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, M. Olazar, J. Bilbao, Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons, Fuel. 89 (2010) 3365–3372.eng
dcterms.referencesF.F. Madeira, N.S. Gnep, P. Magnoux, S. Maury, N. Cadran, Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity, Appl. Catal. A Gen. 367 (2009) 39–46.eng
dcterms.referencesM. Iwamoto, K. Kasai, T. Haishi, Conversion of ethanol into polyolefin building blocks: reaction pathways on nickel ion-loaded mesoporous silica., ChemSusChem. 4 (2011) 1055–8.eng
dcterms.referencesT.K. Phung, L. Proietti Hernández, A. Lagazzo, G. Busca, Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects, Appl. Catal. A Gen. 493 (2015) 77–89.eng
dcterms.referencesW. Xia, Q. Sun, S.W. Liu, L.P. Qiang, Y.C. Cui, Effect of Si/Al ratio on catalytic performance of HZSM-5 zeolites for conversion of ethanol to propylene, Adv. Mater. Res. 953–954 (2014) 1121–1124.eng
dcterms.referencesA.G. Gayubo, A. Alonso, B. Valle, A.T. Aguayo, M. Olazar, J. Bilbao, Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke, Chem. Eng. J. 167 (2011) 262–277.eng
dcterms.referencesJ. Bi, M. Liu, C. Song, X. Wang, X. Guo, C2–C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts, Appl. Catal. B Environ. 107 (2011) 68–76.eng
dcterms.referencesT. Tsoncheva, M. Järn, D. Paneva, M. Dimitrov, I. Mitov, Copper and chromium oxide nanocomposites supported on SBA-15 silica as catalysts for ethylacetate combustion: Effect of mesoporous structure and metal oxide composition, Microporous Mesoporous Mater. 137 (2011) 56–64.eng
dcterms.referencesW. Huang, F. Gong, M. Fan, Q. Zhai, C. Hong, Q. Li, Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum, Bioresour. Technol. 121 (2012) 248–255.eng
dcterms.referencesS&P Global Platts, Latest oil, energy & metals news, market data and analysis, (2015). http://www.platts.com/ (accessed November 11, 2016).eng
dcterms.referencesM.M. Ghiasi, A. Bahadori, S. Zendehboudi, Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network, J. Nat. Gas Sci. Eng. 17 (2014) 26–32.eng
dcterms.referencesH. Ranjbar, H. Ahmadi, R. Khalighi Sheshdeh, H. Ranjbar, Application of relative sensitivity function in parametric optimization of a tri-ethylene glycol dehydration plant, J. Nat. Gas Sci. Eng. 25 (2015) 39–45.eng
dcterms.referencesS. Baek, C. Lee, S. Jeong, Investigation of two-phase heat transfer coefficients of argon–freon cryogenic mixed refrigerants, Cryogenics (Guildf). 64 (2014) 29–39.eng
dcterms.referencesR. Kadambur, P. Kotecha, Multi-level production planning in a petrochemical industry using elitist Teaching–Learning-Based-Optimization, Expert Syst. Appl. 42 (2015) 628–641.eng
dcterms.referencesW. True, Global ethylene capacity continues advance in 2011, Oil Gas J. 110 (2012) 78–84.eng
dcterms.referencesA. Takahashi, W. Xia, Q. Wu, T. Furukawa, I. Nakamura, H. Shimada, et al., Difference between the mechanisms of propylene production from methanol and ethanol over ZSM-5 catalysts, Appl. Catal. A Gen. 467 (2013) 380–385.eng


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International