Mostrar el registro sencillo del ítem

dc.contributor.authorCifuentes, Bernay
dc.contributor.authorFigueredo Medina, Manuel Alfredo
dc.contributor.authorCobo Ángel, Martha Isabel
dc.date.accessioned5/29/2018 15:15
dc.date.available5/29/2018 15:15
dc.date.issued2017-01-14
dc.identifier.citationCifuentes, B., Figueredo, M., Cobo, M. (2017). Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol. Catalysts, 7 (15), 1-20.es_CO
dc.identifier.otherhttp://www.mdpi.com/2073-4344/7/1/15/html
dc.identifier.urihttp://hdl.handle.net/10818/33065
dc.description15 páginases_CO
dc.description.abstractThe steam reforming of ethanol (SRE) on a bimetallic RhPt/CeO2 catalyst was evaluated by the integration of Response Surface Methodology (RSM) and Aspen Plus (version 9.0, Aspen Tech, Burlington, MA, USA, 2016). First, the effect of the Rh–Pt weight ratio (1:0, 3:1, 1:1, 1:3, and 0:1) on the performance of SRE on RhPt/CeO2 was assessed between 400 to 700 °C with a stoichiometric steam/ethanol molar ratio of 3. RSM enabled modeling of the system and identification of a maximum of 4.2 mol H2/mol EtOH (700 °C) with the Rh0.4Pt0.4/CeO2 catalyst. The mathematical models were integrated into Aspen Plus through Excel in order to simulate a process involving SRE, H2 purification, and electricity production in a fuel cell (FC). An energy sensitivity analysis of the process was performed in Aspen Plus, and the information obtained was used to generate new response surfaces. The response surfaces demonstrated that an increase in H2 production requires more energy consumption in the steam reforming of ethanol. However, increasing H2 production rebounds in more energy production in the fuel cell, which increases the overall efficiency of the system. The minimum H2 yield needed to make the system energetically sustainable was identified as 1.2 mol H2/mol EtOH. According to the results of the integration of RSM models into Aspen Plus, the system using Rh0.4Pt0.4/CeO2 can produce a maximum net energy of 742 kJ/mol H2, of which 40% could be converted into electricity in the FC (297 kJ/mol H2 produced). The remaining energy can be recovered as heat.en
dc.formatapplication/pdfes_CO
dc.language.isoenges_CO
dc.publisherCatalystses_CO
dc.relation.ispartofseriesCatalysts 2017, 7(1), 15
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceUniversidad de La Sabanaes_CO
dc.sourceIntellectum Repositorio Universidad de La Sabanaes_CO
dc.subjectAspen-Plusen
dc.subjectBimetallic Rh-Pten
dc.subjectHydrogenen
dc.subjectResponse Surface Methodologyen
dc.subjectSteam reformingen
dc.titleResponse Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanoles_CO
dc.typejournal articlees_CO
dc.type.hasVersionpublishedVersiones_CO
dc.rights.accessRightsopenAccesses_CO
dc.identifier.doi10.3390/catal7010015


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International