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Abstract: In individualized therapy, the Bayesian approach integrated with population pharmacoki-
netic models (PopPK) for predictions together with therapeutic drug monitoring (TDM) to maintain
adequate objectives is useful to maximize the efficacy and minimize the probability of toxicity of van-
comycin in critically ill patients. Although there are limitations to implementation, model-informed
precision dosing (MIPD) is an approach to integrate these elements, which has the potential to
optimize the TDM process and maximize the success of antibacterial therapy. The objective of this
work was to present an app for individualized therapy and perform a validation of the implemented
vancomycin PopPK models. A pragmatic approach was used for selecting the models of Llopis, Goti
and Revilla for developing a Shiny app with R. Through ordinary differential equation (ODE)-based
mixed effects models from the mlxR package, the app simulates the concentrations’ behavior, esti-
mates whether the model was simulated without variability and predicts whether the model was
simulated with variability. Moreover, we evaluated the predictive performance with retrospective
trough concentration data from patients admitted to the adult critical care unit. Although there were
no significant differences in the performance of the estimates, the Llopis model showed better accu-
racy (mean 80.88%; SD 46.5%); however, it had greater bias (mean −34.47%, SD 63.38%) compared to
the Revilla et al. (mean 10.61%, SD 66.37%) and Goti et al. (mean of 13.54%, SD 64.93%) models. With
respect to the RMSE (root mean square error), the Llopis (mean of 10.69 mg/L, SD 12.23 mg/L) and
Revilla models (mean of 10.65 mg/L, SD 12.81 mg/L) were comparable, and the lowest RMSE was
found in the Goti model (mean 9.06 mg/L, SD 9 mg/L). Regarding the predictions, this behavior did
not change, and the results varied relatively little. Although our results are satisfactory, the predictive
performance in recent studies with vancomycin is heterogeneous, and although these three models
have proven to be useful for clinical application, further research and adaptation of PopPK models is
required, as well as implementation in the clinical practice of MIPD and TDM in real time.

Keywords: vancomycin; Bayesian prediction; population pharmacokinetics; personalized dosing;
individualized therapy; critical ill patients; therapeutic drug management; Shiny application

1. Introduction

The population response to therapy is the essential target of individualized medicine.
In this regard, the Bayesian approach is a method that allows clinical pharmacologists to
make predictions about the concentration of a drug, adjust doses and achieve therapeutic
range more efficiently than in normal practice [1].

The bedside Bayesian-guided personalized dosing of vancomycin is proven and has
increased the proportion of patients achieving target AUC24 (area under curve in 24 h)
and the percentage time in the acceptable range (%TTR) [2]. To predict the concentration
of drugs, the challenge is determining the right model that describes the compartmental
profile, the changes in the clearance (Cl) and the volume of distribution (Vd) that affect
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the concentration of the drug in patients with impaired physiological function such as the
critically ill patients, and this objective is more important for hydrophilic antibiotics such
as beta-lactams, glycopeptides or aminoglycosides and drugs that can cause damage to the
brain, hematological and kidney tissues [3–5].

In clinical practice, to prevent injuries and improve outcomes, therapeutic drug mon-
itoring (TDM) is the recommended approach, especially for dose adjustment of narrow-
therapeutic-index (NTI) drugs in critically ill patients. TDM should be implemented partic-
ularly for glycopeptides, aminoglycosides, beta-lactams and linezolid and is globally rising
in popularity because it enhances results and reduces adverse events with vancomycin,
especially the computerized TDM in the middle-income setting [3,5–8]. For vancomycin,
TDM is established by the trough concentration, and it is recommended that the samples
be taken before the fourth dose.

Nevertheless, it has been found that up to 61.5% of trough samples can be incorrectly
taken, leading to additional sampling or causing delayed or wrong dose adjustment [9].
Trough concentration ranges of 10–15 mg/L in intermittent therapy for susceptible mi-
croorganisms and 15–20 mg/L for Staphylococcus aureus are used to approximate AUC.
However, trough concentrations correlate poorly with AUC24 and are no longer recom-
mended due to an association with higher AKI (acute kidney injury) incidence and lack of
data to show that this higher target improves the efficacy of vancomycin. The guideline
proposed by the Infectious Diseases Society of America (IDSA) and a recent position paper
on critically ill patients recommends that the daily AUC24/MIC for an MIC (minimum
inhibitory concentration) of 1 mg/L should be maintained for between 400 and 600 h to
maximize efficacy, with AUC24 < 700 mg/L·h to minimize the likelihood of nephrotoxic-
ity [3,10–18].

To optimize antimicrobial dosing and enhance the chance of reaching the pharmacoki-
netics and pharmacodynamics (PK/PD) target and clinical outcomes, we need to change
the traditional fixed dose method (mg/day) or dose based on weight (mg/kg), supplied by
standard product information, to an individualized dose strategy guided by population PK
(PopPK) models for Bayesian forecasting and TDM [19–24].

Bedside individualized dosing of vancomycin increases the proportion of patients
achieving target AUC24 and the %TTR, and a dosing decision support tool can be imple-
mented and used in the clinical setting with appropriate training to maximize the efficacy
and minimize the toxicity of vancomycin. Unfortunately, Bayesian-guided software is
generally not available, and therefore, monitoring the AUC from the bedside is extremely
difficult, and only a small percentage of practitioners implement this monitoring. Addition-
ally, the TDM has practical limitations due to gaps in the time of administration, the time of
monitoring results and the adjustment time; hence, in the majority of patients, personalized
dosing starts late [2,5,25]. Moreover, the implementation of Bayesian dosing into medical
practice is necessary but is limited by the complexity of mathematics, being computationally
intensive; the need for specialized software; and the need for specialized knowledge for
the interpretation of the PK/PD, which is affected by specific clinical conditions, immune
system functionality, concomitant disorders and comedication. In fact, reducing the gaps in
knowledge about antimicrobial resistance, the proper use of antibiotics and improving the
availability of data for the development of tools are the main recommendations due to the
growing antimicrobial resistance across the world and in Colombia [26].

Model-informed precision dosing (MIPD) is an approach to integrating different
sources of information into a mathematical framework that has the potential to streamline
the TDM process and maximize the success of antibacterial therapy. MIPD is a growing
area of research, trying to justify its implementation in clinical practice, to enhance the
flexibility and precision of dose individualization by changing either the maintenance dose
or the dosing interval to keep the drug concentration in the therapeutic range. However,
this approach requires model validation and re-evaluation of existing workflows and the
adaptation of new, minimally invasive and noninvasive technologies based on biosensors
or traditional methods to determine the concentration of drugs in biological matrices, e.g.,
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immunoassays, high-performance liquid chromatography (HPLC) with fluorescence or
ultraviolet detection and liquid chromatography with tandem mass spectrometry detection
(LC-MS/MS) [5]. The MIPD and TDM implementation in clinical practice needs more
information on targets, as well as education and research on PK/PD models of antibiotics,
biomarkers for treatment response and clinical outcome parameters and should, through
biosensor knowledge, achieve the development of rapid bioanalytical techniques for real-
time TDM [27]. The portable bioanalytical systems provide laboratory testing at the site
of treatment, economic feasibility and ease-of-use, with advantages over the classical
immunoserological methods and modern diagnostic platforms that are expensive, require
long testing time and are not always available in low-complexity hospitals and with limited
economic resources [28,29]. Biosensors and the advancement of nanotechnology in the
context of sepsis can offer advantages for the early detection of pathogens [30,31] and, for
antibiotics such as vancomycin, the precise measurement may help overcome bacterial
resistance and reduce the risk of adverse effects [32–36].

MIPD is based on population models, composed of (i) the structural model of the
antibiotic in a patient population; (ii) a covariate submodel such as body weight, age,
organ function markers or co-medication; and (iii) a mathematical representation of the
interindividual and intraindividual variability of the PK parameters and residual variability
around the individually predicted drug concentration. This model can be utilized before
the administration of the first dose to predict a dosing regimen that maximizes the chance of
meeting the PK/PD/toxicity targets. The election of an adequate model that represents the
patient characteristics is one determinant for the pharmacotherapy of antimicrobials [5,37].

Shiny App is an interactive web application for users to learn more about the impact
of priors and the need for sensitivity analysis in empirical situations. This app allows users
to examine the impact of various prior distribution settings on final model results, such as
weight or kidney function, ensuring that the user is fully aware of the substantive impact
of prior selection.

The objectives of this publication were to present a platform based on open source to
encourage collaborative development and to make a preliminary analysis with retrospective
data from our population on the predictability of trough concentrations by PopPK models
in critically ill patients.

2. Results

Of the cases studied, there were six women and nine men with a mean age of
53.67 years, mean weight of 68.87 kg and mean serum creatinine concentration of 0.76 mg/dL.
The mean creatinine clearance obtained using the models of Llopis et al. and Revilla
et al. [38,39] calculated based on Cockcroft–Gault was 106.79 mL/min, while in the study
by Goti et al. [40], the mean was 95.5 mL/min.

The mean value of the volume of distribution (Vd) in the study by Revilla et al. was
70.32 L. The models of Llopis et al. and Goti et al. have significant differences in the average
of the calculated Vc and Vp, since in the first model the Vp has a higher proportion (Vc:
28.51 L; Vp: 90.9 L), while in the second the Vp is fixed (Vc: 79.67; Vp: 38.4). Vancomycin
clearance values calculated for the models of Llopis et al., Revilla et al. and Goti et al. were
similar, with averages of 4.66 L/h, 4.32 L/h and 3.69 L/h, respectively.

In the Shapiro–Wilk test, it was found that only the distribution of the total concen-
tration and the predictions of the Goti model showed normal behavior, while the other
estimates and predictions did not present a normal distribution.

The average of the total concentration at 36 h was 15.52 mg/L (W = 0.93968,
p-value = 0.3783), similar to the means of the estimates in the models of Revilla and Llopis,
which were 15.76 mg/L (W = 0.75714, p-value = 0.00109) and 15.57 mg/L (W = 0.84333,
p-value = 0.01399), respectively. In the estimates in the Goti model, a mean of 9.21 mg/L
(W = 0.81623, p-value = 0.005984) was obtained. However, with the Wilcoxon test, there
were no significant differences between the estimates and the trough concentration, (Llopis
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W = 154 and p-value = 0.08919; Revilla W = 114, p-value = 0.9674, Goti, W = 109,
p-value = 0.9025).

For the predictions, the means did not vary significantly from the estimates: Llopis
et al. 9.26 mg/L (W = 0.8001, p-value = 0.003687), Revilla et al. 15.5 mg/L (W = 0.7533,
p-value = 0.0009826) and Goti et al. 13.87 (W = 0.90782, p-value = 0.1254), and with Wilcoxon
test, there were no significant differences either (Llopis et al. W = 154, p-value = 0.08919,
Revilla et al., W = 117, p-value = 0.8702, Goti et al., W = 119, p-value p = 0.8063). In the box
plot of Figure 1, it can be seen that the models of Revilla et al. and Goti et al. show similar
behavior in the estimates and predictions with respect to the trough concentration, and
although the Llopis model has a lower mean and grouping, it is still within the limits of the
trough concentration. However, it is necessary to point out that the homogeneity between
the distribution of estimates, predictions and concentration does not necessarily reflect on
the performance.
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Figure 1. Boxplot for estimate predictions and trough concentration.

Although the performance of the estimates is similar for the three models, the model
of Llopis et al., which underestimates the concentration, shows a little more precision and
less variation (mean 83.94%, SD 54.65%) than the Revilla et al. model (mean 136.88%, SD
81.17%), and the Goti et al. model (mean 143.6%, SD 93.92%) overestimates the minimum
concentration. However, the Llopis et al. model showed a higher negative bias (mean
−34.47%, SD 63.38%) and a higher RMSE (mean 10.69 mg/L, SD 12.81 mg/L), while the
models of Revilla et al. (mean 10.61%, SD 66.37%) and Goti et al. (mean 13.54%, SD 64.93%)
performed better on the mean bias, albeit with greater variability.

The RMSE of Revilla et al. (mean 10.65 mg/L, SD 12.81 mg/L) was similar to that of
the model of Llopis et al. (mean 10.69 mg/L, SD 12.23 mg/L), while the Goti et al. model
showed the lowest RMSE (mean 9.06 mg/L, SD 9 mg/L). The summary of the results is
presented in Table 1.

For the predictions, the performance results did not differ significantly and showed
the same behavior as the estimates. The precision of the model of Llopis et al. had a mean
of 80.88% and an SD of 46.5%. Revilla et al. had a mean of 136.02% and an SD of 81.57%,
and Goti et al. had a mean of 123.68% and an SD of 75.22%. The bias was similar, Llopis
et al. had a mean of −35.11% and an SD of 59.73%, Revilla et al. had a mean of 9.78%
and an SD of 66.64%, and Goti et al. had a mean of 3.79% and an SD of 57.42%. The
RMSE did not differ significantly either, Llopis et al. had a mean of 10.63 mg/L and an
SD of 6.65 mg/L, Revilla et al. had a mean of 10.46 mg/L and an SD of 11.83 mg/L, and
Goti et al. had a mean of 7.46 mg/L and an SD of 8.81 mg/L. Figures 2 and 3 show the
Blant–Almant graphs, where it can be seen that the model of Llopis et al. is the one with
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the best performance with the lowest correlation margins. The Goti et al. model is the
model that follows in performance, although with similar correlation margins to the Revilla
et al. All the plots showed a tendency to underestimate or underpredict with respect to
concentrations greater than 10 mg/L for the Llopis model and 15 mg/L for the Goti and
Revilla models. Meanwhile, for lower concentrations, the data may be more grouped, since
as shown by Figure 1, the mean of the calculations of the estimates and predictions for all
the models was below the mean of the concentrations measured in the patients.

Table 1. Comparative results of PopPk.

Llopis Revilla Goti

Mean (SD)

Age (years) 53.67 (23.53)

Weight (Kg) 68.87 (14.63)

Creatinine (mg/dL) 0.76 (0.19)

Clcr (mL/min) * 106.79 (41.63) 95.5 (42.27)

Vc (L) 28.51 (6.06) 70.32 (43.96) 79.67 (35.26)

Vp (L) 90.9 (19.32) 38.4 (0)

Cl (L/h) 4.66 (1.52) 4.32 (1.67) 3.69 (1.34)

Trough concentration (mg/L) 15.52 (9.24)

Estimated 9.21 (4.74) 15.76 (9.92) 15.57 (7.15)

Accuracy (%) 83.94 (54.65) 136.88 (81.17) 143.6 (93.92)

Bias (%) −34.47 (63.38) 10.61 (66.37) 13.54 (64.93)

RMSE (mg/L) 10.69 (12.81) 10.65 (12.23) 9.06 (9)

Predicted (mg/L) 9.26 (5.09) 15.5 (9.49) 13.87 (5.55)

Accuracy (%) 80.88 (46.5) 136.02 (81.57) 123.68 (75.22)

Bias (%) −35.11 (59.73) 9.78 (66.64) 3.79 (57.42)

RMSE (mg/L) 10.63 (6.65) 10.46 (11.83) 7.46 (8.81)

* The difference in Clcr is due to the fact that the Goti model truncates creatinine when calculating for the elderly
and if it is greater than 150 mL/min, see Table 2.
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Table 2. Model of population pharmacokinetic parameters of vancomycin chosen for our study.

Llopis et al. [38] Revilla et al. [39] Goti et al. [40]

Fixed parameters

Cl = θ1 × Clcr + θ2 × TBW
θ1 = 0.034
θ2 = 0.015

Vc = θ3 × TBW
θ3 = 0.414

Q = θ4
θ4 = 7.48

Vp = θ5 × TBW
θ5 = 1.32

Cl = θ1 × Clcr + AGEθ2

θ1 = 0.67
θ2 = −0.24

V = θ3 × θA
4

θ3 = 0.82
θ4 = 2.49

A = 0 i f Cr ≤ 1 mg/dL
A = 1 i f Cr > 1 mg/dL

Cl = θ1 ×
(

Clcr
120

)θ2
× θ3

DIAL

θ1 = 4.5
θ2 = 0.8
θ3 = 0.7

Vc = θ4 ×
(

TBW
70

)
× θ5

DIAL

θ4 = 58.4
θ5 = 0.5
Q = 6.5

Vp = 38.4
DIAL = 1 on dialysis

DIAL = 0 without dialysis
Clcr = 150 mL/min

i f Clcr > 150 mL/min
Scr = 1 mg/dL

i f Scr < 1 mg/mL
and age > 65 years

Interindividual
variability (CV%)

ωCl = 29.2
ωVc = 36.4
ωVp = 39.8

ωCl = 30.13
ωV = 22.83

ωCl = 39.8
ωVc = 81.6
ωVp = 57.1

Intraindividual
variability (SD mg/L)

σ1 = 4.88
σ2 = 4.3 σ1 = 4.23 σ1 = 5.13

σ2 = 3.4

Cl: vancomycin clearance (L/h); Clcr: creatinine clearance (mL/min); TBW: total body weight (kg); Scr: serum
creatinine (mg/dL); Vc: volume of the central compartment (L); Vp: volume of the peripheral compartment (L); V:
distribution volume (L); ωCl: interindividual variability of clearance; ωVc: interindividual variability of the central
compartment; ωVp: interindividual variability of the peripheral compartment; ωV: interindividual variability of
the distribution volume.
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3. Discussion

Although we did not intend to carry out a rigorous external validation, this is the
preliminary validation to determine whether there is an adequate implementation of the
models and to be able to move toward an adaptation process through the continuous
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learning approach. It is assumed that, in clinical practice, the challenge is to create a target-
concentration-controlled infusion (TCI) strategy, as an infusion method for personalized
patient dosing in critically ill patients; however, the PK model must undergo adequate
external validation [41]. Commonly available Bayesian pharmacokinetic models lack
precision in the critically ill; until this precision is improved, AUC24 calculation using
two concentrations via kinetic equations or continuous vancomycin infusion with a single
concentration at steady state may be preferable in this population [42]. In a recent study for
vancomycin, the predictive performance was very heterogeneous across the 31 evaluated
models, and the calculated PK/PD target attainment in AUC24/MIC calculation differed
by more than threefold across models, which would impact dosing decisions [19]. The
poor performance when the models are translated to a new patient population requires
the use of methods such as (i) the continuous learning approach to adapt a population
model to a local environment, which reduced the prediction error by 2–13% compared with
previous models for pediatric patients treated with vancomycin [43], and (ii) the automated
model averaging/selection approach recently studied for vancomycin models, which uses
a number of candidate models, some of which may be specified for a patient [44].

In the first review of population pharmacokinetic analyses, only two models could
accurately describe vancomycin pharmacokinetics in all populations [45]. In a study
conducted in 2013 in Chinese adult patients, Purwonugroho et al. [46]. and Llopis-Salvia
et al. [38] had better predictive performance [47]. In a review that included 30 PopPK
analyses on vancomycin, most of the studies aimed at developing a PopPK model in a
special subpopulation to determine the PK profile and PK parameters that are key for the
optimization of vancomycin dosage regimens [48]. In an external evaluation of population
pharmacokinetic models of vancomycin in large cohorts of intensive care unit patients from
Amsterdam, the models of Llopis-Salvia et al. and Revilla et al. [39] showed acceptable
bias but low accuracy and showed relatively low root mean square error (RMSE) while
showing high inaccuracy [49]. More recently, an evaluation of the predictive performance
of pharmacometrics models in critically ill patients conducted in Australia showed that the
models of Goti et al. [40], Llopis et al. [38] and Roberts et al. [50] are clinically appropriate
to inform vancomycin dosing in critically ill patients, and the Goti model was the only
clinically acceptable model with both a priori (rBias 3.4%) and Bayesian forecasting (rBias
1.5%) approaches [20]. The external evaluation should be the first step in a pharmacokinetic
analysis of vancomycin; for this purpose, from the Sabana University Clinical Pharmacology
Department, within the antibiotic stewardship strategy, we developed an application that
uses population pharmacokinetic models in order to improve skills in precision medicine,
explore the MIPD-based approach for antibiotic management and prove that the use
of linear estimators and Bayesian approaches are comparable, since recent studies have
shown that the two-concentration linear and Bayesian methods demonstrated high-level
agreement with acceptable variability and can be considered comparable for estimating the
AUC24 of vancomycin [51].

Although there are no significant differences between the results of the three models,
there are differences between the approaches, for example, the Goti model may have better
performance because it takes into account the truncation of the creatinine clearance (Clcr)
or the serum creatinine (Scr), since there is a significant correlation between increased
renal clearance (ARC) and lower vancomycin trough serum concentrations (MCV) during
therapy [52]. Furthermore, the MIPD platform must be tested on the platform’s usability,
performance and adaptability to the clinical environment and special conditions of patients.
Precisely, the advantage of MIPD is that it captures drug, disease and patient characteris-
tics in modeling approaches and can be used to perform Bayesian forecasting and dose
optimization [27]. Recently, a consensus review by the Japanese Society of Chemotherapy
and the Japanese Society of Therapeutic Drug Monitoring promoted MIPD for vancomycin,
developed statements for TDM and provided recommendations based on MIPD to increase
treatment response while preventing adverse effects and also recommended expanding
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the use of AUC-guided dosing and the availability of verified open and free Bayesian
dose-optimizing software programs [53].

Bayesian-guided monitoring is always faster and more reliable than equation-guided
monitoring in pre-steady-state dosing intervals in the absence of a loading dose [54]. There
are five Bayesian dose-optimizing software programs that can be used for vancomycin
(Adult and Pediatric Kinetics (APK), Best-Dose, DoseMe, InsightRx and Precise PK) that
have been compared for the prediction of AUC with two measurements of concentrations
and produce similar estimates; although their use has advantages, it requires the purchase
of software and additional training [55]. Different open-source and web-based MIPD plat-
forms for vancomycin have been presented globally, such as VancoCalc from Canada [56],
TDMx from Germany [57], PATver1.1 from Japan [58] and a draft version of Vancomycin
TDM from Korea [59], which have been able to demonstrate their potential benefit for
application in clinical practice, although limited at the moment for academic approaches.
Furthermore, in regards to TDM, there are key barriers such as the uncertainty of service
processes and accessibility of dose advice and, a novel domain, ‘Trust’ [60].

No precise data were found on the sampling times and infusion periods, which were
assumed to be in accordance with the established clinical protocol. This could be considered
as a limitation of the study.

4. Materials and Methods
4.1. Selected Structural Models

The models were selected by a pragmatic approach, for academic proposals with
minimum of models that provide in the interface the ability to compare compartmen-
tal modeling approaches that were relevant to the literature review. Llopis et al. and
Goti et al. [38,40] are two-compartment models, which differ in that the Goti model trun-
cates the creatinine when calculating Clcr in the elderly and truncates the value if it is
greater than 150 mL/min, both of which have been shown to be clinically appropriate to
inform vancomycin dosing in critically ill patients [19], and the Goti model is also suitable
for improving precision dosing in hospitalized patients [20]. The Revilla et al. model [39],
which is one-compartment model, is easier to teach, although its clinical implementation
has not been satisfactorily tested. Table 2 summarizes the models.

4.2. App Development

A Shiny app was developed with R software (v. 4.2) (Indiana, USA) (Figure 4). This
app was divided into two modules: On the left side is the module to register the covariates,
establish the structural model, the dosage regimen and the simulation parameters such as
the interindividual and the intraindividual variability. On the right side is the module where
the simulation is carried out by the mlxR package with the Monolix-Lixoft application
programming interface (API). The PopPK models computed using the pkmodel() function
are presented in the Table 2, and the simulations were performed with the function simulx(),
which implemented complex ODE-based mixed effects models, using the model coding
language Mlxtran. The simulation plot is presented together with the results at the time
of TDM, the prediction analysis and the results in the PK/PD. This application is the
minimum viable product (MVP) for the implementation of an MIPD platform, as a resource
in optimization strategies for the use of antibiotics, so it also has a module for connecting
a potentiostat for the integration of electrochemical biosensors that develop the clinical
pharmacology group for TDM in real time. Figure 4 shows the dashboard, which aims
to display the information on a single screen and create a gamification-oriented interface.
The open-source code is available at https://github.com/LSPOC/VanPOC (accessed on 1
January 2023).

https://github.com/LSPOC/VanPOC
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4.3. Data Extraction

The retrospective data came from the electronic medical records (EHRs) of adult
patients admitted to the intensive care unit (ICU) of the La Sabana Clinic between December
2021 and June 2022. These patients received vancomycin with therapeutic follow up and
did not receive renal replacement therapy. No particular clinical condition was considered
to be selected, and they were chosen arbitrarily from the list of patients registered by the
Antimicrobial Use Optimization Programs. The necessary recorded covariates for each case
for all models were sex, age, weight, creatinine concentration (mg/dL) and also, for the
simulation, the ordered formulation scheme, loading dose, maintenance dose, interdose
interval and infusion time. Finally, for the predictive performance evaluation, the trough
concentration was collected before the fourth dose (36 h) measured by an immunoassay.

4.4. Models’ Evaluation

The models were evaluated with a total of 15 patients. The inputs are the covariates
and ordered formulation scheme for each case, which were loaded and simulated in the
app. We define as estimate trough concentration at 36 h, the calculated trough concentra-
tion with the fixed-parameter models presented in Table 2, without interindividual and
intraindividual variability. For predictions, which add a random effect at the same time,
a CV of 30% for interindividual variability and an SD of 3 mg/L for intraindividual vari-
ability were arbitrarily defined, but they were close to those presented on the proportional
and additive models used by the studies. By default, with the simulx() function, the app
simulates 1000 replicates and returns a result with a 95% confidence interval. From five
predictions obtained, the median was chosen to perform the analysis, because each time a
simulation is run with these variability conditions it will give a different result. For each
case (j), the predictive performance of the concentration estimated and predicted by the
simulation (Csimj) was evaluated by contrast with the collected retrospective data of trough
concentration before the fourth dose (Cobsj), using mean accuracy, mean bias and RMSE,
which were calculated according to Equations (1)–(3). The mean accuracy and mean bias
were formulated following the review by Giavarina [61] for Bland–Altman analysis. The
accuracy is represented as a ratio converted to percentage and the bias as the percentage
difference with respect to the mean between the Csimj and the Cobsj.
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Accuracy =
1
n

n

∑
j=1

Csimj

Cobsj
× 100% (1)

Bias =
1
n

n

∑
j=1

Csimj − Cobsj(
Csimj + Cobsj

)
/2

× 100% (2)

RMSE =

√√√√ 1
n

n

∑
j=1

(
Csimj − Cobsj

)2 (3)

4.5. Statistical Analysis

All analyses were performed using the R software (Indiana, USA) language. The
mean, standard deviation and interquartile ranges of the characteristics of the evaluated
population were calculated. Estimates, predictions, trough concentration and model run
results were obtained. The normal distribution of the parameters was evaluated using the
Shapiro–Wilk test. An analysis of mean differences was performed using the Wilcoxon test,
and the visual interpretation was presented through a box plot. Finally, the performance
results were presented in Bland–Altman plots.

5. Conclusions

The preliminary results are acceptable for the implementation of the models in the
app and for translation to our usual clinical practice, but it is necessary to delve into the
performance aspects that have not yet been tested with prospective data and an experimen-
tal design that allows systematic errors to be eliminated. The platform that was developed
is intended to be applied in MIDP, in addition to engaging in the TDM process, with the
adaptation of biosensors to clinical work routines, which will allow a precise approach
to infections, allowing early diagnosis or TDM in real time that can be used to adjust the
predictive models.
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