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Abstract
We consider certain finite sets of circle-valued functions defined on intervals of real
numbers and estimate how large the intervals must be for the values of these functions
to be uniformly distributed in an approximate way. This is used to establish some
general conditions under which a random construction introduced by Katznelson for
the integers yields sets that are dense in the Bohr group. We obtain in this way very
sparse sets of real numbers (and of integers) on which two different almost periodic
functions cannot agree, which makes them amenable to be used in sampling theorems
for these functions. These sets can bemade as sparse as to have zero asymptotic density
or as to be t-sets, i.e., to be sets that intersect any of their translates in a bounded
set. Many of these results are proved not only for almost periodic functions but also
for classes of functions generated by more general complex exponential functions,
including chirps or polynomial phase functions.
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1 Introduction

Many sampling processes depend on choosing a sampling set on which the functions
to be sampled are uniquely determined. In the case of almost periodic functions on
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R, sets with that property admit a neat topological description: they are precisely
those subsets of R that are dense in the Bohr topology. A clear separation between
consecutive samples is another natural prerequisite, and, for this reason, sampling sets
are usually required to be uniformly discrete. Although Bohr-density and uniform
discreteness might seem conflicting requirements, they are not totally incompatible:
Bohr-dense sets can be not only uniformly discrete but even quite sparse, as we next
describe.

Collet [7] (see also Carlen and Mendes [6] for a similar approach to functions that
can be approximated by polynomial phase functions) proved that a random selection of
points in regularly spaced time-windows almost surely produces a set that is uniformly
distributed in the Bohr compactification, hence is dense in the Bohr topology (see the
section below for unexplained terms), and whose asymptotic density is as small as
desired.

Motivated by a different sort of problem, Katznelson [13] devised a method that
almost surely produces subsets of the group of integersZwith asymptotic null density
which are dense in the Bohr topology. These constructions were further developed in
[11, 14].

In this paper we lay out general conditions for Katznelson’s method to work both
in R and Z for almost periodic functions and, more generally, for function spaces
generated by complex exponentials e2π i p(t) with p(t) running over sets of polynomials
of bounded degreewith coefficients inR (usually known as chirps or polynomial phase
functions). Namely, we prove that partitioning R into intervals of increasing length
and then choosing �k random points in each partition, with �k larger than the order of
the logarithm of the size of the corresponding cell of the partition, we almost surely
obtain a set where these functions are uniquely determined, a set of uniqueness for
them, see Definition 2.1.

The dense sets we obtain, as those in [6, 7, 13], are obtained through the Borel–
Cantelli lemmaandmight require extremely large intervals to be reliable.Our approach
gives hints on the minimum size a sampling interval must have in order to use our
methods for approximate sampling.

Once our general construction is laid, dense subsets of the Bohr group with specific
properties are easy to obtain. In order to illustrate this, we show the existence of t-sets
that are dense in the Bohr compactification. By a t-set we refer here to a special sort
of thin sets, introduced by Rudin [17], which are sets of interpolation for the weakly
almost periodic functions, see Sect. 5 for more on this.

1.1 Notation and Terminology

Even if most of our results are proved forG = R orG = Z, we find it more convenient
to state the results of Sect. 2 for general topological Abelian groups or for locally
compact Abelian (LCA) groups, depending on whether they involve probabilities or
not. In this latter case probabilities will be computed using the Haar measure λG of G.
When it comes toG = R andG = Z, we assume that Haarmeasures are normalized so
that λG is the Lebesgue measure. If I ⊆ R is an interval, λR(I ) therefore corresponds
to the length of I .
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In many of our proofs, we consider a random choice � of, say, �-many elements of
a subset I of a given locally compact group G, and we estimate the probability that �
belongs to a measurable subsetA of I � that is invariant under permuting coordinates.
This random choice, and its corresponding probability, is always to be understood in
the probability space induced by λG� on I �. Hence for a given A ⊆ I �, we have that
P ({� : � ∈ A}) = λG� (A)/λG(I )�.

When it comes to duality, the circle group T has a central rôle. When a specific
distance on T is required, our choice is the angular distance defined for every t, s ∈
[0, 1) by

da
(
e2π i t , e2π is

)
= min{|t − s|, 1 − |t − s|}.

The open ball of radius ε and center 1 will be denoted by Vε, thus:

Vε =
{
e2π i t ∈ T : |t | < ε

}
⊆ T.

IfG is a topological group,C(G, T) denotes the multiplicative group of continuous
T-valued functions, and Ĝ its subgroup of continuous homomorphisms. We refer to
Ĝ as the character group of G. Characters of R are denoted by χτ , τ ∈ R where
χτ (s) = e2π iτ s , for every s ∈ R. It is a standard fact that themap τ �−→ χτ establishes
an isomorphism that maps R onto R̂. The same mapping with τ ∈ Z establishes an
isomorphism which maps Z onto T̂.

If p(x) is a polynomial with real coefficients, we denote by ψp the function
ψp(t) = e2π i p(t), so that ψp = χτ , when p(t) = τ t . The symbol Cn stands for
the set

{
e2π i p(t) : p ∈ Rn[x]

}
, where Rn[x] denotes the set of polynomials in R[x] of

degree at most n. Functions in Cn are known as chirps or polynomial phase functions.
Almost periodic functions were originally introduced by H. Bohr in the seminal

papers [2, 3], and [4] in terms of relatively dense ε-periods; however, for our purposes it
is convenient to regard almost periodic functions as functions that can be approximated
by linear combinations of characters (known as trigonometric polynomials). In the next
definition we extend this approach to spaces generated by other T-valued functions;
see [5] or [12] for other definitions, including H. Bohr’s original one.

Definition 1.1 Let G be a topological group. For J ⊆ C(G, T), let span(J) denote the
linear span of J in the vector space C(G, C). We define

APJ(G) = span(J)
‖·‖∞

.

When J = Ĝ we obtain the space of almost periodic functions on G, and we simply
denote it by AP(G).

The topology that almost periodic functions induce on a group is known as the Bohr
topology. This is the topology the group inherits from its embedding in

∏
χ∈Ĝ Tχ ,

with Tχ = T for every χ , given by g �−→ (χ(g))χ for every g ∈ G. The closure
GAP of G in

∏
χ∈Ĝ Tχ is known as the Bohr compactification of G and can also be

identified with the spectrum of AP(G) when AP(G) is viewed as a Banach algebra.
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Abounded and continuous function f onG is almost periodic precisely when it can
be continuously extended to a function f b ∈ C(GAP). Therefore if D is a discrete
subset of G that is dense in GAP, then there is at most one almost periodic function
f on G that fits any values that were preassigned on D.
We next define the sort of almost periodic functions that are most suitable for our

sampling methods, the functions with summable Bohr–Fourier series.

Definition 1.2 Let G be a topological group and J ⊆ C(G, T). We define

AJ(G) =
{∑

φ∈J
αφφ :

∑
φ∈J

∣∣αφ

∣∣ < ∞
}
.

The natural isomorphism between the Banach algebra �1(J) and AJ(G) defines a
norm on this latter space. We denote this norm by ‖ · ‖AJ .

When J = Ĝ, AJ(G) can be identified with the Fourier algebra A(GAP) (as defined,
for instance, in [18, Section 1.2.3]) on the Bohr compactificaction GAP of G. Note
that AJ(G) may be strictly contained in APJ(G), see [18, Theorem 4.6.8]; the result
is originally due to Segal [19].

If X is a set, a subset A ⊆ X is an n-subset if its cardinality is n ∈ N. A subset D
of a metric space (X , ρ) is ε-dense if for every x ∈ X there exists dx ∈ D such that
ρ(x, dx ) < ε.

2 Approximately Bohr-Dense Subsets

We aim to construct sets where particular families of functions are uniquely deter-
mined.

Definition 2.1 Let � be a subset of a topological group G, and let A be a vector
subspace of C(G, C). We say that � is a set of uniqueness for A if whenever f ∈ A
satisfies f

∣∣
�

= 0, then f = 0.

We first consider sets of approximate uniqueness.

Definition 2.2 Let G be a topological group. Fix I ⊆ G and J ⊆ C(G, T). The subset
� ⊆ I is an (J, I , ε)-sampling set if for every f ∈ AJ(G),

∥∥ f
∣∣
I

∥∥∞ ≤ ε · ‖ f ‖AJ + ∥∥ f
∣∣
�

∥∥∞ .

The following sets contain enough elements to approximate the values of a given
family F of functions in C(G, T).

Definition 2.3 Let G be a topological group. Fix F ⊆ C(G, T), I ⊆ G and ε > 0.
The subset � ⊆ G is an (F, I , ε)-matching set if for every a ∈ I there exists xa ∈ �

such that φ(xa) ∈ φ(a) · Vε for every φ ∈ F .
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The notation below provides a compact expression of the property defining matching
sets.

Definition 2.4 For I ⊆ G, a ∈ G, 
 ⊆ C(G, T) and ε > 0, we define

(1) N�(I , ε) = {φ ∈ C(G, T) : φ(I ) ⊆ Vε}, and
(2) N�(
, ε, a) = {t ∈ G : φ(t) ∈ φ(a) · Vε for all φ ∈ 
}. For a = 0 we write

N�(
, ε).

Observe that N�(
, ε, a) = a+N�(
, ε) in case
 consists of homomorphisms. In
these terms, the subset � ⊆ G is an (F, I , ε)-matching set if � ∩ N� (F, ε, a) 
= ∅

for every a ∈ I . We now see that matching sets, even when slightly thickened, are
sampling sets.

Proposition 2.5 Let G be a topological group,� ⊆ I ⊆ G andJ ⊆ C(G, T). Suppose
that there exists F ⊆ C(G, T) that satisfies

(1) � is an (F, I , ε)-matching set, and
(2) J ⊆ F · N� (I , ε).

Then � is a (J, I , (6π + 2)ε)-sampling set.

Proof For f ∈ AJ(G), let (φ j )
n
j=1 ⊆ J and (α j )

n
j=1 ⊆ C be such that

∥∥ f −∑n
j=1 α jφ j

∥∥∞ < ε · ‖ f ‖AJ
. Let z ∈ I be fixed. Given that J ⊆ F · N� (I , ε),

we can choose ψ j ∈ F and κ j ∈ N� (I , ε) with φ j = ψ j · κ j . Since κ j ∈ N� (I , ε)
implies |κ j (z) − 1| < 2πε, we obtain

∣∣∣∣
n∑
j=1

α jφ j (z) −
n∑
j=1

α jψ j (z)

∣∣∣∣ ≤
n∑
j=1

|α j | · ∣∣ψ j (z)
∣∣ · ∣∣κ j (z) − 1

∣∣ < 2πε · ‖ f ‖AJ .

On the other hand, since � is an (F, I , ε)-matching set, there exists xz ∈ � such that
ψ(xz) ∈ ψ(z) · Vε for every ψ ∈ F . Hence

∣∣∣∣
n∑
j=1

α jψ j (z) −
n∑
j=1

α jψ j (xz)

∣∣∣∣ ≤
n∑
j=1

|α j | · ∣∣ψ j (z) − ψ j (xz)
∣∣ ≤ 2πε · ‖ f ‖AJ .

Therefore, from

| f (z)| ≤
∣∣∣∣ f (z) −

n∑
j=1

α jφ j (z)

∣∣∣∣ +
∣∣∣∣

n∑
j=1

α jφ j (z) −
n∑
j=1

α jψ j (z)

∣∣∣∣

+
∣∣∣∣

n∑
j=1

α jψ j (z) −
n∑
j=1

α jψ j (xz)

∣∣∣∣ +
∣∣∣∣

n∑
j=1

α jψ j (xz) −
n∑
j=1

α jφ j (xz)

∣∣∣∣

+
∣∣∣∣

n∑
j=1

α jφ j (xz) − f (xz)

∣∣∣∣ + | f (xz)| ,
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we obtain

| f (z)| < ε · ‖ f ‖AJ + 2πε · ‖ f ‖AJ + 2πε · ‖ f ‖AJ + 2πε · ‖ f ‖AJ + ε · ‖ f ‖AJ

+ ∥∥ f
∣∣
�

∥∥∞ = (6π + 2)ε · ‖ f ‖AJ + ∥∥ f
∣∣
�

∥∥∞ .

��
As may be expected, Proposition 2.5 yields density results when applied to all finite
subsets of a concrete subspace of C(G, T).

Corollary 2.6 Let G be a topological group, J ⊆ C(G, T) and � ⊆ G. Suppose that
� is an (F,G, ε)-matching set for every finite subset F ⊆ J and every ε > 0. Then
� is a set of uniqueness for APJ(G).

Proof Let f ∈ APJ(G) with f
∣∣
�

= 0, and let 0 < ε < 1 be fixed. Find a J-
trigonometric polynomial Pf = ∑n

j=1 α jψ j , with (α j )
n
j=1 ⊆ C and (ψ j )

n
j=1 ⊆ J,

such that
∥∥ f − Pf

∥∥∞ < ε. This implies that
∥∥Pf

∣∣
�

∥∥∞ ≤ ε. With ε̃ = ε/
∑n

j=1 |α j |
and F = {ψ1, . . . , ψn}, we obtain fromProposition 2.5 that� is an (F,G, (6π+2)ε̃)-
sampling set. Given that Pf ∈ AF (G), we have as a consequence that

‖Pf ‖∞ ≤ (6π + 2)ε̃ ·
n∑
j=1

|α j | + ε ≤ (6π + 3)ε.

Since ‖ f − Pf ‖∞ ≤ ε, we deduce that ‖ f ‖∞ < (6π + 4)ε. We conclude that f = 0,
for ε was arbitrary. ��
In the case of almost periodic functions, every continuous function on GAP coincides
with an almost periodic function on G, and we obtain therefore that � is dense in
GAP.

Corollary 2.7 Let G be an Abelian topological group and � ⊆ G. Suppose that � is
an (F,G, ε)-matching set for every finite subset F ⊆ Ĝ and every ε > 0. Then � is
a set of uniqueness for AP(G). In particular � is dense in GAP.

Proof The only difference with Corollary 2.6 resides in the density statement. The
Gelfand representation identifiesAP(G) with C(GAP, C). If � is not dense in GAP,
by Urysohn’s lemma there would be a nonconstant function f : GAP → C that
vanishes on �, which is impossible since f is determined by its values on �. ��

To be able to cover simultaneously the cases of R and Z, we state our next results
in the context of locally compact groups with Haar measure.

Our next objective is to estimate the probability of selecting a set that is an
(F, {a}, ε)-matching set for a fixed a ∈ G.

We start by introducing some notation.

Definition 2.8 For I ⊆ G, n ∈ N, a ∈ G, and ε > 0, we define

PI ,a,n,ε = {
F ⊆ C(G, T) : |F | = n and λG

(
N�(F, ε, a) ∩ I

) ≥ εnλG(I )
}
, and

PI ,n,ε = {
F ⊆ C(G, T) : |F | = n and λG

(
N�(F, ε, a) ∩ I

) ≥ εnλG(I ) for all a ∈ G
}
.
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The sets PI ,a,n,ε are formed by n-subsets of C(G, T) whose elements are functions
φ that map some point of I into φ(a) · Vε with probability at least εn .

Definition 2.9 Let G be a locally compact Abelian group, I ⊆ G and a ∈ G. For

 ⊆ C(G, T), n, � ∈ N, and ε > 0, we define Aa,
,n,�,ε,I to be the set of all
�-subsets � ⊆ I such that, for every F ⊆ 
 with F ∈ PI ,a,n,ε,

� ∩ N� (F, ε, a) 
= ∅.

The set Aa,
,n,�,ε,I is made of all the �-subsets of I containing some point that is
mapped by all functions φ ∈ F ⊆ 
 into φ(a) · Vε. In what follows, we regard the
setsAa,
,n,�,ε,I as events in the probability space determined by the restriction of λG�

to I �, see the remarks at the beginning of Sect. 1.1.
The setsPI ,a,n,ε andAa,
,n,�,ε,I are tailored to facilitating these estimates, as the

following lemma shows.

Lemma 2.10 Let I ⊆ G be a subset of positive Haar measure, and let 
 ⊆ C(G, T)

be an N-subset. Consider as well a ∈ G, ε > 0, and n ∈ N. Then

P
(Ac

a,
,n,�,ε,I

) ≤
(
N

n

) (
1 − εn

)� ≤
(
Ne

n

)n (
1 − εn

)�
.

Proof The second inequality is a well-known estimate of binomial coefficients. For
the first inequality, we observe that

Ac
a,
,n,�,ε,I =

⋃{[ (
N� (F, ε, a) ∩ I

)c ]� : F ⊆ 
, F ∈ PI ,a,n,ε

}
,

where P

([ (
N� (F, ε, a) ∩ I

)c ]�) ≤ (1 − εn)� since λG
((
N� (F, ε, a) ∩ I

)c) ≤
λG(I )(1 − εn) for every F ∈ PI ,a,n,ε. The inequality follows because there are

(N
n

)
n-subsets of 
. ��

In the following definition,we introduce the eventsBa,
∗,n,�∗,ε,I ∗ which correspond
to the determining sets we are constructing.

Definition 2.11 Let G be an LCA group, and let I ∗ = (Ik)k∈N and 
∗ = (
k)k∈N
be sequences of subsets of G and C(G, T), respectively. Let as well a sequence �∗ =
(�k)k∈N of positive integers, a ∈ G, n ∈ N, and ε > 0 be given. We define the event

Ba,
∗,n,�∗,ε,I ∗ = {
(�k)k∈N : There existsN ∈ N such that �k ∈ Aa,
k ,n,�k ,ε,Ik for k ≥ N

}
.

We now estimate the probability of the events Ba,
∗,n,�∗,ε,I ∗ regarded as events in the
probability space

∏
k I

�k
k , where each factor is assumed to carry the probability mea-

sure induced by the restriction of the Haar measure on G�k . It then follows that given
a sequence of intervals (Ik)k∈N and a sequence (
k)k∈N of finite subsets of C(G, T),
a randomly chosen sequence of �k-subsets of the Ik’s belongs to Ba,
∗,n,�∗,ε,I ∗ with
probability one as long as the growth of �k is large enough (where “enough” is con-
trolled by log k and the cardinality of the 
k’s).
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Lemma 2.12 Consider the sequences

(1) I ∗ = (Ik)k∈N, with Ik ⊆ G of nonzero Haar measure,
(2) 
∗ = (
k)k∈N, with 
k ⊆ C(G, T) and Lk := |
k | < ∞, and
(3) �∗ = (�k)k∈N ⊆ N.

Let n ∈ N and ε > 0. If there are γ > 0 and k0 ∈ N such that

−n log Lk

εn
+ �k >

−(1 + γ ) log k

log(1 − εn)
(2.1)

for every k ≥ k0, then P
(Ba,
∗,n,�∗,ε,I ∗

) = 1 for every a ∈ G.

Proof Since all indices except k are fixed throughout the proof, we denote byAk the set
Aa,
k ,n,�k ,ε,Ik and for k

′ ∈ N we identify the setAk′ with the subset
∏

k Xk ⊆ ∏
k I

�k
k

defined by Xk′ := Ak′ and Xk := I �k
k for k 
= k′. Note that the probabilities of the

event Ak′ in the probability space
∏

k I
�k
k and in I

�k′
k′ coincide.

Using this identification, we have that

Ba,
∗,n,�∗,ε,I ∗ =
⋃
N∈N

⋂
k≥N

Ak = lim supAk .

We now see that P(Bc
a,
∗,n,�∗,ε,I ∗) = 0. In fact, it follows from Lemma 2.10 that

∑
k≥k0

P
(Ac

k

) ≤
∑
k≥k0

(
Lke

n

)n

(1 − εn)�k =
( e
n

)n ∑
k≥k0

(1 − εn)
n log Lk
log(1−εn )

+�k .

Since log(1− εn) < −εn , we obtain n log Lk
log(1−εn)

+ �k >
−n log Lk

εn
+ �k , and by (2.1) we

get

∑
k≥k0

P
(Ac

k

) ≤
( e
n

)n ∑
k≥k0

(1 − εn)
−n log Lk

εn +�k ≤
∑
k≥k0

[
(1 − εn)

−(1+γ )

log(1−εn )

]log k
,

which is a convergent series of the form
∑

k≥k0 x
log k with |x | < 1

e . The Borel–Cantelli
lemma then implies

P(Bc
a,
∗,n,�∗,ε,I ∗) = P

(
(lim supAk)

c) = 0,

as required. ��

3 Matching Intervals and Characters

In this section G = R or G = Z. Recall that for p ∈ R[x], ψp(t) = e2π i p(t), and for
τ ∈ R, χτ (x) = e2π iτ x .
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Definition 3.1 ([8, Definition 2.74]) Let x : [0,+∞) → R
n be a continuous function.

The continuous discrepancy of x in [0, T ] is defined by

DT (x) = sup
V⊆Tn

∣∣∣∣
1

T

∫ T

0
1V

(
e2π ix(t)

)
dt − λTn (V)

∣∣∣∣ ,

where 1V denotes the characteristic function of the set V, e2π ix(t) stands for the vector(
e2π i x1(t), . . . , e2π i xn(t)

) ∈ T
n , and the supremum is taken over all rectangles in T

n

with sides parallel to the axes.

Definition 3.2 ([8, Definition 2.70 and Theorem 2.75]) A function x : [0,+∞) → R
n

is continuouslywell distributedmodulo1 if it is continuous and lim
T→∞ DT (x(t + τ)) = 0

uniformly in τ .

We propose the following definition to make our notation lighter.

Definition 3.3 The polynomials {p1, . . . , pn} ⊆ R[x] are strongly linearly indepen-
dent over Q if for each nonzero (h1, . . . , hn) ∈ Z

n the polynomial
∑n

j=1 h j p j is
nonconstant.

The functions {ψp1 , . . . , ψpn } are strongly linearly independent over Q if
{p1, . . . , pn} ⊆ R[x] are strongly linearly independent over Q.

Let H be a Hamel basis of R over Q, and let CH denote the constant polynomials
with values in H . The polynomials {p1, . . . , pn} ⊆ R[x] are strongly linearly inde-
pendent over Q if and only if the set {p1, . . . , pn} ∪ CH is linearly independent over
Q.

Theorem 3.4 ([8, Corollary of Theorems 2.73 and 2.79]) If {p1, . . . , pn} ⊆ R[x] are
strongly linearly independent over Q, then the function x : [0,+∞) → R

n defined by
x(t) = (p1(t), . . . , pn(t)) is continuously well distributed modulo 1.

Proof By Weyl’s criterion for continuous well-distribution [8, Theorem 2.73], it suf-
fices to prove that for every nonzero h = (h1, . . . , hn) ∈ Z

n ,

lim
T→∞

1

T

∫ T

0
e2π ih·x(t+τ) dt = 0, (3.1)

uniformly in τ ≥ 0.
Let h = (h1, . . . , hn) ∈ Z

n be nonzero. Since the polynomial qh(t) =∑n
j=1 h j p j (t) is nonconstant, there exist t0 ∈ R and C > 0 such that |qh(t)| ≥ C

and q ′′
h (t) has constant sign for every t ≥ t0. From [8, Theorem 2.79] it then follows

that qh is continuously well distributed, and Weyl’s criterion applied to qh shows that
(3.1) holds. ��
If F is a family of T-valued functions, we are trying to estimate how long an interval
I should be for F to be as likely as expected to send some element of I into a fixed
neighbourhoodofT.Wenext see, as a consequenceofTheorem3.4, that for polynomial
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phase functions generated by strongly linearly independent polynomials, this happens
as soon as the length of I exceeds a bound that depends only on the cardinality of the
family and the size of the neighbourhood.

Theorem 3.5 Let F = {ψp1 , . . . , ψpn } where {p1, . . . , pn} ⊆ R[x] are strongly lin-
early independent over Q, and let γ > 0. Then there exists L(F, γ ) > 0 such that for
every interval I ⊆ R with λR(I ) ≥ L(F, γ ) and every a ∈ R,

λR
(
N� (F, δ, a) ∩ I

) ≥ (
(2δ)n − γ

)
λR(I ),

for every δ > 0with (2δ)n−γ > 0. In particular, F ∈ PI ,n,δ ifλR(I ) ≥ L(F, δn(2n−
1)).

Proof Fixa ∈ R andγ > 0.DefinexF : [0,+∞) → R
n byxF (t) = (p1(t), . . . , pn(t))

and put, for each δ > 0, Vδ,a = ψp1(a) · Vδ × · · · × ψpn (a) · Vδ ⊆ T
n . By The-

orem 3.4 the function xF(t) is continuously well distributed. There is accordingly
L(F, γ ) > 0 such that T ≥ L(F, γ ) implies DT (x(t + τ)) ≤ γ for every τ , i.e.,

1

T

∫ T

0
1Vδ,a

(
e2π ixF (t+τ)

)
dt ≥ (2δ)n − γ. (3.2)

Let now I = [τ0, τ0 + L] ⊆ R be an arbitrary interval of length L ≥ L(F, γ ). Taking
into account the definition of Vδ,a , inequality (3.2) applied to τ = τ0 and T = L
implies that

L · ((2δ)n − γ
) ≤ λR

({
t ∈ [0, L] : ψp j (t + τ0) ∈ ψp j (a) · Vδ for j = 1, . . . n

})

= λR
(
N� (F, δ, a) ∩ I

)
.

��
The same argument of Theorem 3.5 with well distributed sequences instead of con-
tinuously well distributed functions can be used for G = Z.

Corollary 3.6 Let F = {ψp1 , . . . , ψpn } where {p1, . . . , pn} ⊆ R[x] have coefficients
in [0, 1) and are strongly linearly independent over Q, and let γ > 0. Then there is
L(F, γ ) > 0 such that, for every interval I ⊆ Zwith |I | ≥ L(F, γ ) and every a ∈ Z,

|N� (F, δ, a) ∩ I | ≥ (
(2δ)n − γ

) |I |,

for every δ > 0with (2δ)n−γ > 0. In particular, F ∈ PI ,n,δ if |I | ≥ L(F, δn(2n−1)).

To close this section, we consider sets of characters instead of sets of more general
continuousT-valued functions. In this case F ∈ PI ,a,n,ε if and only if F ∈ PI ,n,ε, and
therefore we localize our arguments at the identity. For some special sets of characters
F , we can actually find a more concrete bound for Theorem 3.5.
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Theorem 3.7 Let 0 <
q1
p1

< · · · <
qn
pn

= 1 be a finite sequence of rationals and ε ∈(
0, 1

2

)
. If I ⊆ R is an interval with λR(I ) ≥ p1 · · · pn−1, then F := {χ q1

p1
, . . . , χ qn

pn
} ∈

PI ,n,ε.

Proof Let N := p1 · · · pn−1. We can assume that the fractions q1
p1

, . . . ,
qn−1
pn−1

are irre-
ducible. If they are not, we work with the simplified fractions and obtain a smaller N
that works.

We first assume λR(I ) = N and define Jk := {
0, 1, . . . , �pkε�, pk − �pkε�, . . . ,

pk − 1
}
for each k = 1, . . . , n − 1. We claim that

(1) for each | ∈ ∏n−1
k=1 Jk there exists z| ∈ Z such that either [z|, z| + ε] or [z| − ε, z|]

is contained in N� (F, ε) ∩ I ,
(2) for z0 we have [z0 − ε, z0 + ε] ⊆ N� (F, ε) ∩ I , and
(3) the integers z| are all different.

Indeed, for fixed jn−1 ∈ Jn−1 we consider the set Ln−1, jn−1 consisting of those integers
in I that are mapped to e2π i jn−1/pn−1 by χ qn−1

pn−1
; i.e.,

Ln−1, jn−1 =
{
z ∈ Z ∩ I : qn−1

pn−1
· z = jn−1

pn−1
+ � for some � ∈ Z

}
.

Since (the class of) qn−1 is a generator of the cyclic group Z/pn−1Z, the set Ln−1, jn−1

contains precisely N/pn−1 integers with a distance of pn−1 between consecutive ones.
For z ∈ Ln−1, jn−1 , either [z, z + ε] or [z − ε, z] is contained in I and sent into Vε by
both χ1 and χ qn−1

pn−1
. For z ∈ Ln−1,0, both characters map [z − ε, z + ε] into Vε.

Next we fix jn−2 ∈ Jn−2 and consider the set Ln−2, jn−2 of those elements of
Ln−1, jn−1 that are sent to e2π i jn−2/pn−2 by χ qn−2

pn−2
; i.e.,

Ln−2, jn−2 =
{
z ∈ Ln−1, jn−1 : qn−2

pn−2
· z = jn−2

pn−2
+ � for some � ∈ Z

}
.

As before, exactly N/(pn−1 pn−2) elements of Ln−1, jn−1 belong to Ln−2, jn−2 , and
the distance between any two consecutives is pn−1 pn−2. For z ∈ Ln−2, jn−2 , either
[z, z + ε] or [z − ε, z] is sent into Vε by χ1, χ qn−1

pn−1
and χ qn−2

pn−2
. For z ∈ Ln−2,0, these

characters map [z − ε, z + ε] into Vε.
After (n − 1) steps the components of | ∈ ∏n−1

k=1 Jk have been fixed, the set L1, j1

contains precisely one integer, say z| ∈ ⋂n−1
k=1 Lk, jk , and [z|, z| + ε] or [z| − ε, z|] is

contained in N� (F, ε) ∩ I . Since each | produces a different z|, our claim is proved.
Since |Jk | = 2�pkε� + 1 for each k, and the interval around z| have length at least

ε, the intervals constructed in the previous claim have a total length of

ε ·
[
n−1∏
k=1

(2�pkε� + 1) + 1

]
≥ 2εnN . (3.3)
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In fact, since 2�nε� + 1 ≥ nε for every n ∈ N, in case piε, p jε ≥ 1
2−√

2
for some

i 
= j then (2�piε�+1)(2�p jε�+1) ≥ (2piε−1)(2p jε−1) ≥ (
√
2piε)(

√
2p jε) =

2ε2 pi p j , and (3.3) follows. On the other hand, if 1 ≤ piε ≤ 1
2−√

2
for some i , then

3 = (2�piε�+1) ≥ 2piε, and inequality (3.3) holds. The only remaining case is when
piε < 1 for every i except at most one i0. In that case, from 2�pi0ε� + 1 ≥ 2pi0ε − 1
we also obtain that (3.3) holds since its left-hand side is bounded below by

ε · [(2�pi0ε� + 1) + 1] ≥ ε · (p1ε) · · · (2pi0ε) · · · (pn−1ε) = 2εnN .

We have thus shown that λR
(
N� (F, ε) ∩ I

) ≥ 2εnλR(I ) when λR(I ) = N , as
desired. In case λR(I ) > N , there exist j ∈ N and δ ∈ [0, N ) such that λR(I ) =
j N + δ. Therefore, the interval I can be split into j-many subintervals of length N
and another one of length δ. In each of the intervals of length N we can argue as above
and find a family of subintervals of N� (F, ε) ∩ I whose accumulated length is 2Nε.
We then obtain that

λR
(
N� (F, ε) ∩ I

) ≥ 2 j Nεn ≥ 2εn
(
1 − 1

j + 1

)
( j N + δ) ≥ εnλR(I ).

��
Corollary 3.8 Let 0 <

q1
p1

< · · · <
qn
pn

be a finite sequence of rationals and ε ∈ (
0, 1

2

)
.

If I ⊆ R is an interval with λR(I ) ≥ p1 · · · pnqn−2
n , then F := {χ q1

p1
, . . . , χ qn

pn
} ∈

PI ,n,ε.

Proof From λR(I ) ≥ p1 · · · pnqn−2
n we get λR(

qn
pn
I ) ≥ (qn p1) · · · (qn pn−1), and

Theorem 3.7 then implies pn
qn
F := {χ pnq1

qn p1
, . . . , χ pnqn−1

qn pn−1
, χ1} ∈ P qn

pn
I ,n,ε. The result

follows because N�(
pn
qn
F, ε) ∩ qn

pn
I = qn

pn

(
N� (F, ε) ∩ I

)
implies pn

qn
F ∈ P qn

pn
I ,n,ε

if and only if F ∈ PI ,n,ε. ��
The interval can be shortened in the presence of certain algebraic relations in F .

Corollary 3.9 Let 0 <
q1
p < · · · <

qn
p be a finite sequence of rationals and ε ∈ (

0, 1
2

)
.

If I ⊆ R is an interval with λR(I ) ≥ pqn−2
n , then F := {χ q1

p
, . . . , χ qn

p
} ∈ PI ,n,ε.

Proof From λR(I ) ≥ pqn−2
n we obtain λR(

qn
p I ) ≥ qn−1

n and Theorem 3.7 then asserts
p
qn
F = {χ q1

qn
, χ q2

qn
, . . . , χ1} ∈ P qn

p I ,n,ε, i.e., F ∈ PI ,n,ε. ��
A considerably shorter interval is needed when F is sparse enough.

Corollary 3.10 Let F := {χτ1, . . . , χτn } be such that τ j+1
τ j

> 1
2ε , j = 1, . . . , n− 1, for

some ε ∈ (
0, 1

2

)
. If I ⊆ R is an interval with λR(I ) ≥ 1

τ1
, then F ∈ PI ,n,ε.

Proof If λR(I ) = 1
τ1
, there exists I1 ⊆ I such that λR(I1) = 2ε

τ1
and χτ1 [I1] = Vε.

Thenχτ2 [I1] = T, and there exists I2 ⊆ I1 such thatλR(I2) = 2ε· 2ε
τ1
andχτ2 [I2] = Vε.
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At the nth stepwefind In ⊆ In−1 such thatλR(In) = (2ε)n

τ1
andχτn [In] ⊆ Vε. It follows

that In ⊆ N� (F, ε) ∩ I and F ∈ PI ,n,ε. Finally, for λR(I ) ≥ 1
τ1

there exist j ∈ N

and δ ∈ [0, 1
τ1

) such that λR(I ) = j
τ1

+ δ. Split I into j-many subintervals of length
1
τ1

plus another one of length δ. By the above argument, each of the former intervals

contains a subinterval of length (2ε)n

τ1
and the proof then goes as in Theorem 3.7. ��

4 Random Bohr Dense Subsets

In this section we combine the results of Sects. 2 and 3 in order to show that if enough
points are randomly chosen from each element of a sequence of sufficiently large
intervals, then almost surely we obtain a Bohr-dense set. The estimates in Sect. 3
are first used to find criteria for a collection of finite choices in a sequence of long
enough intervals of real numbers to be an (F, R, ε)-matching set for every m-set F
(with m ∈ N fixed) of strongly linearly independent polynomial phase functions. The
estimates of Sect. 2 are then used to see that these criteria are almost surely met. This
yields sets that are (F, R, ε)-matching for every finite set of degree n polynomial
phase functions and every ε > 0, that is, sets of uniqueness for APCn .

Lemma 4.1 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [ak, ak + bk] ⊆ R with
lim sup(bk)k∈N = +∞. For each k ∈ N, put tk := max(|ak |, |ak + bk |) and let 
k be
a finite subset of C(R, T) whose restrictions to [−tk, tk] are εk-dense in the restriction
of Cn to [−tk, tk], where εk → 0 as k → ∞. Let
∗ = (
k)k∈N, and let �∗ = (�k)k∈N
be a sequence of positive integers. If (ds)s∈N ⊆ R is a dense subset and for some
m ∈ Z and ε > 0 we have (�k)k∈N ∈ ⋂

s∈N Bds ,
∗,m,�∗,ε,I ∗ , then � = ⋃
k∈N �k is

an (F, R, ε)-matching set for every m-subset F of Cn strongly linearly independent
over Q.

Proof Let F = {ψp1 , . . . ψpm } ⊆ Cn with {p1, . . . , pm} ⊆ R[x] strongly linearly
independent over Q. Fix x0 ∈ R and consider N ∈ N and s0 ∈ N with 3

N < ε and

da
(
ψp j (ds0), ψp j (x0)

)
<

1

N
, for j = 1, . . . ,m. (4.1)

Since (�k)k ∈ Bds0 ,
∗,m,�∗, 1
N ,I ∗ , there is k0 such that for every k ≥ k0,

�k ∈ Ads0 ,
k ,m,�k ,
1
N ,Ik

. (4.2)

Applying Theorem 3.5 to δ, γ > 0 such that δ < 1
N < 2δ and (2δ)m − γ > N−m ,

we can find k ≥ k0 large enough to satisfy (4.2), εk < 1
2 (

1
N − δ), bk > L(F, γ ) and

ds0 ∈ [−tk, tk]. Since 
k is εk-dense in the restriction of Cn to [−tk, tk], for every
j = 1, . . . ,m there exists φ j ∈ 
k such that for every t ∈ [−tk, tk],

da
(
φ j (t), ψp j (t)

)
< εk <

1

2

(
1

N
− δ

)
. (4.3)
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From (4.1) and (4.3) it follows that, for t ∈ N� (
F, δ, ds0

) ∩ Ik , we have

da
(
φ j (t), φ j (ds0)

) ≤ da
(
φ j (t), ψp j (t)

) + da
(
ψp j (t), ψp j (ds0)

)

+da
(
ψp j (ds0), φ j (ds0)

)
<

1

N
,

thus N� (
F, δ, ds0

) ∩ Ik ⊆ N�(F̃, 1
N , ds0) ∩ Ik , where F̃ := {φ1, . . . , φm}. Since

bk > L(F, γ ) implies λR(N�(F, δ, ds0) ∩ Ik) ≥ N−mλR(Ik), we conclude that
F̃ ∈ PIk ,ds0 ,m, 1

N
, which together with (4.2) implies �k ∩ N�(F̃, 1

N , ds0) 
= ∅. From

(4.1) and (4.3) we then obtain that for y ∈ �k ∩ N�(F̃, 1
N , ds0),

da
(
ψp j (y), ψp j (x0)

) ≤ da
(
ψp j (y), φ j (y)

) + da
(
φ j (y), φ j (ds0)

)

+ da
(
φ j (ds0), ψp j (ds0)

) + da
(
ψp j (ds0), ψp j (x0)

)
<

3

N
,

i.e.,ψp j (y) ∈ ψp j (x0)·V 3
N

⊆ ψp j (x0)·Vε. In conclusion,� is an (F, R, ε)-matching
set. ��

Theorem 4.2 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [ak, ak + bk] ⊆ R

with lim sup(bk)k∈N = +∞ and tk := max(|ak |, |ak + bk |) ≥ k for every k ∈ N. For
each k ∈ N let �k ⊆ Ik be a random subset with |�k | = �k and �k 
= O(log tk).
Then, for any fixed n ∈ N, the set � = ⋃

k∈N �k is, almost surely, a set of uniqueness
for APCn .

Proof We divide this proof into Steps. We first determine that a certain number of
conditions in the selection of the �k’s are satisfied with probability one, and then we
show that, when the sets �k meet these conditions, then the set � = ⋃

k∈N �k is a set
of uniqueness for APCn .

Step 1: Exhibiting an event B of probability one.
Fix n ∈ N. Since �k 
= O

(
log tk

)
, the set

KN ,m =
{
k ∈ N : �k ≥ (n + 1)mNm log 2 +

[
mNm (n+4)(n+1)

2 − 2
log(1−N−m)

]
log tk

}

is infinite for each N ,m ∈ N. For each k ∈ N define


̃k =
{

n∑
r=0

jr

tr+1
k

xr : − �tr+2
k � ≤ jr < �tkr+2�, jr ∈ Z, r = 0, . . . , n

}
⊆ Rn[x]

and 
k = {
ψp : p ∈ 
̃k

}
. Observe that |
k | = ∏n

r=0(2�t (r+2)
k �) ≤ 2n+1t

(n+1)(n+4)
2

k .
Fix m, N ∈ N. If k ∈ KN ,m , then
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�k ≥ (n + 1)mNm log 2 +
[
mNm (n + 4)(n + 1)

2
− 2

log
(
1 − N−m

)
]
log tk

≥ mNm log |
k | − 2

log
(
1 − N−m

) log k,

and Lemma 2.12 applied to the sequences I ∗
N ,m = (Ik)k∈KN ,m , 


∗
N ,m = (
k)k∈KN ,m ,

and �∗
N ,m = (�k)k∈KN ,m with ε = 1

N and with n replaced by m, yields then that for
every q ∈ R the event Bq,
∗

N ,m ,m,�∗
N ,m , 1

N ,I ∗
N ,m

occurs with probability one. Therefore,

if (ds)s∈N ⊆ R denotes a countable dense subset, the event

B =
⋂
s∈N

⋂
m∈N

⋂
N∈N

Bds ,
∗
N ,m ,m,�∗

N ,m , 1
N ,I ∗

N ,m

also occurs with probability one.
Step 2: The set 
k is

n+1
tk

-dense in the restrictions of Cn to [−tk, tk].
Consider any element f (x) = e2π i p(x) of Cn with p(x) = ∑n

r=0 ar x
r ∈ R[x]. For

each r ∈ {0, . . . , n} find jr ∈ Z such that
∣∣∣ar − jr

tr+1
k

∣∣∣ ≤ 1
tr+1
k

. Then, the polynomial

q(x) = ∑n
r=0

jr
tr+1
k

xr is such that h(x) = e2π iq(x) ∈ 
k , and for every x ∈ [−tk, tk]
we obtain

da(h(x), f (x)) ≤ |p(x) − q(x)| ≤
n∑

r=0

∣∣∣∣ar − jr

tr+1
k

∣∣∣∣ · |x |r

≤
n∑

r=0

|x |r
tr+1
k

≤
n∑

r=0

trk
tr+1
k

= n + 1

tk
.

Step 3: If (�k)k∈N ∈ B, then � = ⋃
k∈N �k is (F, R, ε)-matching for every

F ⊆ Cn induced by a finite family of polynomials that is strongly linearly independent
over Q and every ε > 0.

For such a set �, fix ε > 0 and let F = {ψp1 , . . . , ψps } with {p1, . . . , ps} ⊆ Rn[x],
strongly linearly independent over Q. Fix N ∈ N with 1

N < ε. By our Step 2 above,
Lemma 4.1 applies to the sequences I ∗

N ,m , 
∗
N ,m , and �∗

N ,m and shows that � is an
(F, R, ε) matching set.

Step 4: If (�k)k∈N ∈ B, then � = ⋃
k∈N �k is (F, R, ε)-matching for every finite

set F ⊆ Cn and every ε > 0.

Fix ε > 0, and let F = {ψp1 , . . . , ψps } with {p1, . . . , ps} ⊆ Rn[x]. We may
assume that {p1, . . . , pm} are strongly linearly independent over Q and that, for each
j = m + 1, . . . , s, there is a constant C j ∈ R and there are integers Q and Zi j ,
1 ≤ i ≤ m, with

p j = C j −
m∑
i=1

Zi j

Q
pi .
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Let us define M = max{∑m
i=1 |Zi j | : j ∈ [m +1, N ]} and ε̃ = ε/M . Fix N ∈ N with

1
N < ε̃.

Since the family F̃ = {p1/Q, . . . , pm/Q} is strongly linearly independent over Q,
Step 3 above shows that � is an (F̃, R, ε̃)-matching set. We next see that � is also an
(F, R, ε)-matching set.

Let a ∈ R. Since � is an (F̃, R, ε̃)-matching set, there is xa ∈ �0 such that
xa ∈ N�(F̃, ε̃, a); that is, for each i = 1, . . . ,m, there are δi with |δi | < ε̃ and
Mi ∈ Z such that

pi
Q

(xa) − pi
Q

(a) = δi + Mi .

Then, for j = m + 1, . . . , s,

p j (xa) − p j (a) =
m∑
i=1

Zi j

[
pi
Q

(xa) − pi
Q

(a)

]
=

m∑
i=1

Zi j (δi + Mi ).

Since
∑m

i=1 Zi j Mi ∈ Z and
∣∣∑m

i=1 Zi jδi
∣∣ ≤ ε, we see that ψp j (xa) ∈ ψp j (a) · Vε

for every j = m + 1, . . . , s. The same conclusion being obvious for j = 1, . . . ,m, it
follows that xa ∈ N� (F, ε, a), as we wanted to show.

Having proved that � is an (F, R, ε)-matching set for every ε > 0 and every finite
set F ⊆ Cn , an application of Corollary 2.6 then concludes the proof. ��
In the case of AP(R), we also obtain almost sure density.

Theorem 4.3 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [ak, ak + bk] ⊆ R

with lim sup(bk)k∈N = +∞ and tk := max(|ak |, |ak + bk |) ≥ k for every k ∈ N. For
each k ∈ N let �k ⊆ Ik be a random subset with |�k | 
= O(log tk). Then, almost
surely, � = ⋃

k∈N �k is dense in R
AP.

The same argument yields the following general version of Theorem 3.1 in [13].

Theorem 4.4 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [nk, nk + mk] ⊆ Z

with lim sup(mk)k∈N = +∞ and tk := max(|nk |, |nk + mk |) ≥ k for every k ∈ N.
For each k ∈ N let �k ⊆ Ik be a random subset with |�k | 
= O(log tk). Then, almost
surely, � = ⋃

k∈N �k is dense in Z
AP.

5 Bohr-Dense Sets with Special Properties

The estimates of Sect. 2 can be easily used to find Bohr-dense sets with special proper-
ties, as long as the conditions imposed in Lemma 2.12 and Theorem 4.2 leave enough
room for a random subset to satisfy the required properties.

In this section we focus on interpolation properties of sets. For a given algebra
A ⊆ C(G, C), with G a topological group, a subset X ⊆ G is said to be an A-
interpolation set if every bounded function f : X → C admits a continuous extension
f̃ : G → Cwith f̃ ∈ A.We consider here a class of sets of interpolation for the algebra
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WAP(G) of weakly almost periodic functions on G, which are those functions whose
set of translates by elements of G is weakly relatively compact. One of the important
features of this class is that the interpolation properties of its members are not a part
of its definition, which focuses on its combinatorial side.

Definition 5.1 Let G be a topological group. A subset E of G is a t-set if for every
g ∈ G, g 
= 0, the intersection E ∩ (E + g) is relatively compact.

The class of t-setswas introduced byRudin in [17],where he proved that every function
supported on a t-set of a discrete group is automatically weakly almost periodic, see
[9] for further references on this topic. In the terminology of [9], t-sets in LCA groups
are (approximable) WAP(G)-interpolation sets.

Sets of interpolation for the Fourier–Stieltjes algebra B(G) (consisting of Fourier–
Stieltjes transforms of measures on Ĝ) are known as Sidon sets and have been heavily
studied (see the monographs [10] and [15]). Since B(G) ⊆ WAP(G), we have that
both Sidon sets and t-sets are sets of interpolation for the algebra ofweakly almost peri-
odic functions. An interesting observation is that every Sidon set can be decomposed
as a finite union of t-sets (see [10, Corollary 6.4.7]).

As already noted in [13], the random process of Theorems 4.2 and 4.4 cannot be
adapted to yield Sidon sets. It is well known, see, e.g., [10, Corollary 6.3.13], that a
length N interval contains at most CE log N elements of a Sidon set E . This route has
however proved to be fruitful with other less demanding properties: Neuwirth [16], for
instance, obtains dense subsets of Z

AP that are �(p) for every p, and Li, Queffélec
and Rodríguez-Piazza [14] have obtained dense subsets of Z

AP that are p-Sidon for
every p > 1. We do not need these concepts here and refer to [10, 14, 16] for their
proper definitions. It suffices to say that Sidon sets are p-Sidon for every p > 1 and
�(p)-sets for every p.

While, as mentioned, our construction does not work with Sidon sets, it does work
with the important class of t-sets. We show in this section that t-sets that are dense in
GAP do exist for G = Z and G = R and that, indeed, random constructions in the
spirit of Lemma 2.12 lead almost surely to t-sets that are dense in GAP.

We first need a lemma that helps in recognizing t-sets. For a subset � ⊆ R, we
define its step length as

StL(�) = inf
{|z − z′| : z, z′ ∈ �, z 
= z′

}
.

Lemma 5.2 Let ([ak, bk])k∈N be a sequence of intervals in R, and for every k ∈ N, let
�k be a finite subset of [ak, bk]. If
(1) the sequence of gaps (ak+1 − bk)k∈N is increasing and unbounded, and
(2) there exists k0 such that StL(�k) > bk−1 − ak−1 for every k ≥ k0,

then the set � = ⋃
k∈N �k is a t-set.

Proof Suppose there is 0 
= t0 ∈ R such that�∩(�+ t0) is unbounded. Since the sets
�k are finite, therewill be k < k′, with k > k0, ak−bk−1 > |t0|, and tk ∈ �k∩(�+t0),
tk′ ∈ �k′ ∩ (� + t0). Then t0 = tk − t1 = tk′ − t2 with t1, t2 ∈ �. If t0 > 0, using that
t0 < ak − bk−1 < ak′ − bk′−1, one has that bk−1 < t1 ≤ tk and that bk′−1 < t2 ≤ tk′ .
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A symmetric argument works when t0 < 0. It follows that t1 ∈ �k and t2 ∈ �k′ . But
then StL(�k′) ≤ |tk′ − t2| = |t0| < |ak − bk−1|, a contradiction with hypothesis (2).

��
Theorem 5.3 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [zk, zk + Nk] ⊆ Z

such that the sequence of gaps (zk+1 − zk − Nk)k∈N is increasing and unbounded. For

each k ∈ N let �k ⊆ Ik be a random subset with |�k | = �k . If
∑

k∈N
�2k Nk−1

Nk
< ∞,

then, almost surely, � = ⋃
k∈N �k is a t-set.

Proof For k ∈ N we consider the event Bk = {�k : StL(�k) ≤ Nk−1}. A rough
estimate of the probability of this event is obtained by observing that any choice of �k
elements with step length at most Nk−1 is witnessed by elements in Ik at a distance
of at most Nk−1. If for each element z in Ik we find those elements in Ik larger than
z but within a distance of at most Nk−1, we see that there are at most Nk−1 witnesses
containing z. Since there are at most

(Nk−1
�k−2

)
different subsets of Ik of cardinality �k

that contain a given witness, we deduce altogether that

P (Bk) ≤ (Nk + 1)Nk−1
(Nk−1

�k−2

)
(Nk+1

�k

) = (�k − 1)�k Nk−1

Nk
≤ �2k Nk−1

Nk
.

We conclude that
∑

k∈N P (Bk) < ∞, and the Borel–Cantelli lemma then shows that,
almost surely, there exists k0 ∈ N such that �k /∈ Bk for every k ≥ k0. Lemma 5.2
then proves that � is a t-set. ��
Theorem 5.4 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [zk, zk + Nk] ⊆ R

such that the sequence of gaps (zk+1 − zk − Nk)k∈N is increasing and unbounded. For

each k ∈ N let �k ⊆ Ik be a random subset with |�k | = �k . If
∑

k∈N
�2k Nk−1

Nk
< ∞,

then, almost surely, � = ⋃
k∈N �k is a t-set.

Proof Again, for k ∈ N we consider the event Bk = {�k : StL(�k) ≤ Nk−1}. We first
estimate the probability ofBk when �k = 2. ForB0 := {{x, y} ⊆ Ik : |x − y| ≤ Nk−1}
and considering the pair (x, y) to be uniformly distributed on the square Ik × Ik , we
obtain

P(B0) = 1 − 2
∫ zk+Nk

zk+Nk−1

∫ x−Nk−1

zk

1

N 2
k

dy dx = Nk−1(2Nk − Nk−1)

N 2
k

.

Now, if a set �k consisting of �k points is chosen in Ik , for �k to be in Bk it will be
enough that any pair {x, y} of its elements satisfies |x − y| ≤ Nk−1. A rough estimate
is then

P (Bk) ≤
(

�k

2

)
· P (B0) = �k(�k − 1)Nk−1

2N 2
k

(2Nk − Nk−1) ≤ �2k Nk−1

Nk
.

We deduce that
∑

k∈N P (Bk) < ∞, and the Borel–Cantelli lemma then shows that,
almost surely, there exists k0 ∈ N such that �k /∈ Bk for every k ≥ k0. Lemma 5.2
proves then that � is a t-set. ��
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We now choose parameters in Theorem 4.2 so as to fit in Theorem 5.3.

Theorem 5.5 Let I ∗ = (Ik)k∈N be a sequence of intervals Ik = [Lk, 2Lk] ⊆ R with
Lk = (k!)4 for every k ∈ N. For each k ∈ N let �k ⊆ Ik be a random subset with
|�k | = k, and let � = ⋃

k∈N �k . Then, almost surely, � is a dense t-set in R
AP. If

we choose �k ⊆ Z, then, almost surely, � is a dense t-set in Z
AP.

Proof This sequence of intervals satisfies the hypotheses of both Theorems 4.2 and
5.4, or their analogs 4.4 and 5.3. Hence � almost surely satisfies both conclusions. ��
The sets of Theorems 4.4 and 5.5 have asymptotic density zero. Other examples of
Bohr-dense subsets of Z are obtained in [1]. The sets in [1] satisfy the condition

lim
N→∞

1

N
|EN ∩ (EN + k)| = 1, for all k ∈ Z,

where EN is the set consisting of the first N terms of E . They are therefore very far
from being t-sets.
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