
INTRODUCTION 

Magnesium (Mg) is a chemical element that is essential for hu-
man life. In the brain, it is physiologically responsible for many 
processes involved in intracellular homeostasis, blood-brain barri-
er integrity, protein synthesis, neuronal proliferation, aging, and 
apoptosis [1]. This element is also a special target of research and 
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clinical monitoring [2] as it is associated with memory and learn-
ing [3], headache and migraine [4], cerebral edema [4], stroke 
[5], and traumatic brain injury [6], among many other neurologi-
cal disorders [1-4]; therefore, knowledge regarding Mg in neuro-
critical care is crucial. However, there is a paucity of literature on 
the role of this cation in physiological and pathophysiological 
mechanisms that occur in neuronal dynamics. Although the num-
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ber of studies is few, the results obtained are interesting. 
Considering that neurocritical care is a relatively new discipline 

in certain regions of the world [7,8] and that it is an independent 
protective factor for neurological diseases in critical care [9,10], 
the dissemination of basic concepts and utilities of tools that can 
positively impact the burden of neurological diseases that occur 
mainly in low- and middle-income countries is essential [11], es-
pecially due to cerebrovascular disease and neurotrauma [11]. In 
the published literature, most of the studies that have evaluated 
the usefulness of Mg in neurocritical care have focused on the 
management of subarachnoid hemorrhage [12-17], neurocritical 
complications during pregnancy and puerperium [18,19], and 
traumatic brain injury [20-22], and its use in other conditions of 
great interest, such as seizures and epilepsy is unknown, neuro-
muscular disorders, metabolic encephalopathies and delirium, 
neuroendocrine diseases, neurogenetic diseases, neuropsychiatric 
disorders [3], and non-neurological complications in neurocriti-
cal patients, which implies a wide knowledge gap between Mg 
and neurocritical care.  

Understanding neurological physiology from the most basic as-
pects (at the molecular level) and seeking solutions in translation-
al metabolomics research [2] will help in improving outcomes in 
the management of neurocritical pathologies to improve the qual-
ity of care of these patients, providing patient and family satisfac-
tion, and reducing costs in acute care, as well as in neurorehabilita-
tion and disability. In this order of ideas, the objective of this man-
uscript is to review basic concepts on the physiology of Mg in 
neurological dynamics, its role in the pathophysiology of neuro-
logical disorders, and the results of its use in the management of 
neurocritical diseases. 

BASIC ASPECTS OF MAGNESIUM 
PHYSIOLOGY IN THE CENTRAL 
NERVOUS SYSTEM 

Role of magnesium in cell dynamics 
Mg has been described as an indispensable chemical element in 
the maintenance of cellular dynamics as it is associated with sever-
al enzymatic reactions that regulate cellular metabolism and pro-
tein synthesis [23]. This mineral is absorbed in the gastrointesti-
nal tract and kidneys and its serum level, together with that of cal-
cium (Ca), is increased by parathormone [3]. Its free concentra-
tions do not correlate with the total body concentration, as ap-
proximately 1% of this mineral is found in the extracellular fluid 
[24]. Among its different forms, ionized Mg is the most biologi-
cally active [24]. 

Mg facilitates organic activities in the neuromuscular system, 

such as neuronal and muscular excitability, contractibility, and 
rhythm in the cardiovascular system, and vasodilatation in the cir-
culatory system [25-27]. More specifically, in the brain, it is re-
sponsible for intracellular transmission, myelination, synapse for-
mation and maintenance, and regulation of cholinergic, dopami-
nergic, and serotonergic transmission (through the decrease of 
acetylcholine release at the neuromuscular junction; blockade of 
N-methyl-D-aspartate (NMDA) receptors, inhibiting the excit-
atory function of glutamate, and stimulation of GABA receptors 
generating neuronal hyperpolarization, and exerting an inhibitory 
effect in the process) [28-31]. It is also involved in the release of 
calcitonin gene-related peptide (neuropeptide). It decreases the 
release of substance P, induces the secretion of inflammatory me-
diators, such as tumor necrosis factor α and interleukin 1, and  
intervenes in the mitigation of neuroinflammatory processes 
[32,33]. 

Therefore, it is directly involved in the maintenance of neuro-
logical integrity, neuroprotection against apoptosis in situations of 
hypoxia-ischemia, prevention of synapse loss in neurodegenera-
tion, promotion of neurogenetic activities, proliferation of neural 
stem cells, and neuromaturation [1-4,32]. Likewise, it plays a fun-
damental role in neuroplasticity, and precisely because of this, re-
search on this element and its impact on the acute management 
and neurorehabilitation of neurological disorders is important 
[34]. However, it is first necessary to know the neurometabolic 
processes that enable the establishment of hypotheses with bio-
logical plausibility and the prediction outcomes in biological and 
human models. 

Magnesium and the blood-brain barrier 
The blood-brain barrier is a highly selective semi-permeable bor-
der of endothelial cells that prevents solutes in the circulating 
blood from crossing non-selectively into the extracellular fluid of 
the central nervous system, where neurons reside [35]. In the 
brain, there are two main associated fluid compartments: the ex-
tracellular fluid, which surrounds neurons and glial cells, and the 
cerebrospinal fluid, which is located in the subarachnoid space 
and ventricles of the brain [36]. The passage of Mg through this 
barrier is made possible by a complex system of genes and pro-
teins [1]. 

Animal studies have shown that Mg can cross the blood-brain 
barrier and is transported across the barrier with a net flow from 
the blood to the parenchyma [37-39]. The active transport of Mg 
from the blood to the extracellular fluid of the brain is evidenced 
by its higher concentration in the extracellular cortical fluid than 
in the plasma dialysate or cisternal cerebrospinal fluid [38,39]. 
Another interesting finding is that Mg administration could atten-
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uate cell death secondary to alterations in the cytoskeleton and, 
therefore, reduce apoptosis due to p53 expression after brain trau-
ma [1]. 

Concerning the association between Mg and brain edema, it 
has been proposed that Mg supplementation decreases regional 
brain tissue water content, attenuates brain edema formation after 
trauma, protects the blood spinal cord blood, improves clinical re-
covery, and preserves normal spinal cord ultrastructure in the case 
of experimental spinal cord injury in rats [1,40-42]. This has been 
demonstrated in experimental studies focused on the treatment of 
cerebral edema that sought to demonstrate the benefits of Mg ad-
ministered in combination with various pharmacological drugs in 
animal models and its possible role in the resolution of cerebral 
edema [43]. They revealed that increased aquaporin-4 (AQP-4), 
which is a bidirectional transmembrane water channel believed to 
play a role in brain injury by contributing to increased brain water 
content, could result in cerebral edema [40,41]. 

In this order of ideas, and given that Mg supplementation caus-
es the downregulation of AQP-4 [40,41], Mg is able to exert ben-
eficial effects in neurocritical conditions (Fig. 1). Furthermore, it 
also exerts neuroprotective effects in anoxic insults by enhancing 
the recovery of synaptic transmission and blocking the loss of pro-
tein kinase C [42], restricting the opening of paracellular path-
ways through Ca antagonism, alleviating oxidative stress, and pre-
venting hypertensive encephalopathy by reducing the cerebral 
perfusion pressure [1]. 

MAGNESIUM ALTERATIONS AND 
MOLECULAR PATHOPHYSIOLOGICAL 
MECHANISMS 

Hypomagnesemia 
Hypomagnesemia is defined as a plasma Mg concentration of 
< 1.7 mg/dL [44,45]. The clinical manifestations of hypomagne-
semia are nonspecific since hypomagnesemia is associated with 
hypocalcemia and hypokalemia in many cases [44-46]. The caus-
es of hypomagnesemia can be classified according to their patho-
physiology, as follows: (1) decreased intake; (2) redistribution 
secondary to an increase in the passage of Mg from the extracellu-
lar to the intracellular space (present in pathologies such as hyper-
parathyroidism, hyperthyroidism, etc.); (3) gastrointestinal losses 
(diarrhea, vomiting, or surgical resection of the intestine); and (4) 
renal losses [44-47]. However, given that serum Mg concentra-
tion is not usually requested as part of routine blood tests, it 
should be kept in mind and its measurement should be requested 
directly in clinical situations that could possibly be associated with 
alterations in its homeostasis [48]. 

Among the clinical manifestations of hypomagnesemia are 
cardiac arrhythmias, which are the most important, and neuro-
muscular alterations, such as convulsions, paresthesia, nystag-
mus, Chvostek's sign, and positive Trousseau's sign [44-48]. A 
curious fact is that between 40% and 60% of patients with hypo-
kalemia also have hypomagnesemia. This is because there are 

Fig. 1. Neuroprotective mechanisms of magnesium against blood-brain barrier disruption. NMDA, N-methyl-D-aspartate; AQP-4, 
aquaporin-4. Created by the authors using BioRender.
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different circumstances specific to the patient that cause the loss 
of both Mg and potassium, including gastrointestinal losses (di-
arrhea) and the chronic use of diuretics, such as furosemide 
[45,46]. 

As for treatment, it is known that in cases where plasma Mg 
deficiency is severe ( < 1 mEq/L in serum), or symptomatic 
with clinical manifestations of neuromuscular, neurological, or 
cardiac arrhythmias, the Mg repletion should be achieved by 
prompt intravenous administration of 2 g of magnesium sulfate 
(MgSO4) in 100 mL of D5W for 5 to 10 minutes, followed by a 
continuous infusion of 4 to 6 g/day for 3 to 5 days (only in the 
case where the renal function remains relatively normal and sta-
ble) while treating the underlying cause of the Mg deficiency to 
prevent future recurrence in the case where it is secondary to 
another pathology [44-48]. As for maintenance therapy, oral ad-
ministration of Mg oxide (400 mg twice a day or three times a 
day) can be used as long as the risk factors for Mg deficiency are 
maintained [44-48]. 

Hypermagnesemia 
Hypermagnesemia is defined as a serum Mg level of > 2.2 mg/dL. 
This entity is very rare; however, it can occur iatrogenically when 
intravenous MgSO4 is being administered in patients with chronic 
renal disease or in those who chronically ingest Mg-containing 
laxatives [48,49]. 

The clinical manifestations of intoxication will depend on the 
level of Mg in plasma; as such, in the case of mild hypermagnese-
mia, it may even be asymptomatic. Therefore, its clinical mani-
festations may only appear with levels above 2.5 mmol/L 
[50,51]. The clinical manifestations of hypermagnesemia in-
clude oliguria (2.5%), loss of patellar reflex (1.6%), cardiac con-
duction disturbance, respiratory depression, and cardiorespira-
tory arrest [52]. However, certain studies suggest that hyperma-
gnesemia is associated with an increased need for vasopressor 
drugs, increased risk of respiratory failure, and increased mortal-
ity [48-52]. 

Serious gastrointestinal manifestations may also arise as a 
cause of this pathology, such as the association of hypermagne-
semia with the presence of toxic megacolon or ischemic colitis 
due to altered intestinal circulation, possibly leading to local 
ischemia due to decreased intestinal motility caused by fecal im-
paction and increased intraluminal pressure that could be aggra-
vated if accompanied by prolonged hypotension [48-53]. The 
treatment of intoxication is based on adequate hydration, in-
creasing renal excretion through the use of diuretics, and the ad-
ministration of 1 g of the antidote (Ca chloride or Ca gluconate) 
[49-52]. 

MAGNESIUM AND NEUROLOGICAL 
DISORDERS 

Status epilepticus 
There is extensive experience regarding the use of MgSO4 infu-
sion in eclampsia seizures; however, there are few studies support-
ing the effectiveness of this drug in status epilepticus and super-re-
fractory status epilepticus [54-56]. 

During these states, the NMDA receptor is overregulated, lead-
ing to glutamate hit-toxicity and seizure potentiation. Because this 
receptor plays a key role in drug resistance and the genesis of sta-
tus epilepticus of status epilepticus and super-refractory status ep-
ilepticus, NMDA receptor antagonists have been studied as anti-
convulsants of choice for these pathologies [54-56]. 

Previous studies have shown that the use of MgSO4 as an 
NMDA receptor antagonist at a dose of 4 g, followed by a contin-
uous infusion at a rate of 2–6 g/hr, safely increases plasma Mg lev-
els by 3.5 mmol/L, with positive results for this group of patients 
[54-56]. 

Intracranial hemorrhage 
Intracranial hemorrhage is considered the second most common 
type of stroke, with the lowest percentage improvement in mor-
tality and morbidity among all strokes. It occurs in two stages: the 
first consists of the growth and stabilization of an initial hemato-
ma that appears acutely, and the second consists of the expansion 
of the perihematoma edema and its irruption into the blood-brain 
barrier [5,57-59].  

Mg has been reported to prevent hematoma formation in both 
stages due to three of its specific properties [57-59]: (1) Its vaso-
dilator function is achieved thanks to its property as a Ca channel 
antagonist, which prevents the entry of Ca and its release by the 
sarcoplasmic reticulum. Its function as an angiotensin-converting 
enzyme inhibitor and its capacity to increase prostacyclin produc-
tion also play a role. This vasodilator effect favors the lowering of 
blood pressure, which attenuates the volume of the hematoma 
and its progression to intracranial hemorrhage [57-59]. (2) Its 
ability to promote hemostasis: This cation acts as a substantial co-
factor in hemostasis by increasing Ca2+ binding to factor IX, stabi-
lizing its binding, and promoting the activation of factor IX by fac-
tor Xia. It promotes the interaction between tissue factor and the 
γ-carboxyglutamate-rich domain of factor X [57,58]. (3) Its abili-
ty to preserve the blood-brain barrier: Functioning as an NMDA 
receptor antagonist potentiates presynaptic adenosine and inhib-
its oxidized low-density lipoproteins. Further, it can relax vascular 
smooth muscles and improve cerebral blood flow. In this way, it 
acts in the second stage of hemorrhage formation, minimizing he-
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matoma breakthrough to the blood-brain barrier [57,58]. 

Cerebral vasospasm secondary to aneurysmal subarachnoid 
hemorrhage 
Cerebral vasospasm occurs in approximately 70% of patients with 
aneurysmal subarachnoid hemorrhage, which is the main cause of 
morbidity and mortality in these patients. This fact has led to re-
search focused on the prevention of vasospasm as a measure to re-
duce irreversible sequelae in these patients [60-62]. It has been 
shown that MgSO4 can decrease outcomes in patients with sub-
arachnoid hemorrhage by attenuating vasospasm [1]. This is 
achieved by different mechanisms, including blockade of NMDA 
receptors, inhibition of excitatory amino acids, and antagonism of 
voltage-dependent Ca channels [60-62]. 

Recent studies have shown that MgSO4 therapy is safe and re-
duces the incidence of ischemia following subarachnoid hemor-
rhage vasospasm. It consists of ingesting doses of 64 mmol/day, 
which would bring serum Mg to levels of 1–2 mmol/L, which do 
not represent a risk for the organism [4]. MgSO4 therapy has 
shown greater effectiveness than other drugs, such as milrinone, 
by producing greater hypotension with a consequent requirement 
for dopamine and norepinephrine compared to Mg [60-62]. 

Ischemic stroke 
In 2019, Larsson et al. [63] reported an inverse relationship be-
tween serum Mg levels and the risk of cardioembolic stroke, asso-
ciating hypomagnesemia with a 70%–80% higher risk of suffering 
from this pathology. The mechanisms through which Mg contrib-
utes to reducing the risk of ischemic stroke are largely explained 
by its properties: its ability to improve endothelial function, re-
duce blood pressure, atherosclerotic plaque formation, oxidative 
stress, insulin resistance, and fasting glycemia. It is also believed to 
possess qualities that reduce platelet aggregation, decrease throm-
boxane A2 synthesis, and von Willebrand factor binding [63,64]. 
Mg's ability to affect the dynamics of autoregulation of the cere-
bral vasculature and its neuroprotective effect by inhibiting the ac-
tion of NMDA receptors [64] has made this electrolyte one of in-
terest to the stroke research community. 

To date, few randomized clinical trials and prospective studies 
have evaluated the role of MgSO4 in both ischemic and hemor-
rhagic stroke, mostly using mixed groups (ischemic and hemor-
rhagic stroke) (Table 1) [63,65-72]. In 2004, one of the first rep-
resentative studies, a clinical trial with the objective of determin-
ing whether the administration of MgSO4 in the prehospital phase 
of stroke was safe and favorable, was published; in this study, it 
was observed that neuroprotective activity was indeed observed 
[65]. However, the total number of patients was 20, and it was a 

mixed group (80% ischemic stroke and 20% hemorrhagic stroke) 
[65]. Almost a decade later, Saver et al. [66] conducted a trial with 
the purpose of evaluating the role of MgSO4 administration time 
from symptom onset in patients with stroke and long-term func-
tional outcomes. In this study, 1,700 patients who had an ischemic 
stroke (73.3%) were enrolled, and the average time of drug ad-
ministration from symptom onset was 45 minutes; no significant 
benefits were obtained compared to placebo [66]. 

In particular, Pan et al. [68] carried out a study in which they 
evaluated the impact of the oral administration of Mg and potassi-
um as supplements to table salt on the recovery of stroke patients, 
observing that out of three groups (salt [Na], salt+K, and salt 
+K+Mg), the group that received Mg supplementation had a 
more favorable recovery in the neurological evolution of stroke 
[68]. Unfortunately, other studies have reported non-significant 
results; however, like those described here, they have limitations 
and are heterogeneous. In spite of this divergence, the neuropro-
tective effect of MgSO4 was remarkable. Similar results are evident 
in studies that used groups of patients with subarachnoid hemor-
rhage in both the prehospital and hospital phases [70,71]. 

In a systematic review conducted by Fang et al. [72] that includ-
ed 40 prospective cohort studies, a 7% reduced risk of stroke was 
found in people with high Mg intake compared to those with low 
Mg intake. Recently, the most powerful claims have been in favor 
of the usefulness of MgSO4 in improving the prognosis of stroke 
patients. However, it is necessary to continue to propose 
high-quality studies with a considerable sample size to obtain con-
vincing results [73]. 

Traumatic brain injury 
The neuroprotective role of Mg was evidenced in experimental 
studies by the inhibition of glutamate release, NMDA receptor ac-
tivation, Ca channel opening, lipid peroxidation, free radical pro-
duction, edema formation, and the opening of mitochondrial per-
meability transition pores responsible for apoptosis, such as p53 
and Bax [74-77]. 

Hypomagnesemia in patients with severe traumatic brain injury 
is associated with an increase in negative outcomes, such as mor-
tality and poor functional prognosis [74-77], and adequate con-
trol is part of the comprehensive management of patients with se-
vere traumatic brain injury [75]. Lyons and Blackshaw [77] con-
ducted a systematic review and meta-analysis in which they evalu-
ated the impact of MgSO4 in the management of adults with trau-
matic brain injury, where it was observed that the pooled results 
of six studies found all-cause mortality to not be significantly dif-
ferent in the treatment group (relative risk, 0.84; 95% confidence 
interval, 0.54–1.33; p = 0.46) with an I2 value of > 70%. With re-
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gard to the secondary outcomes, there was no significant differ-
ence in the Glasgow Outcome Scale score between the treatment 
and control groups. It is due to the above that attempts have been 
made to introduce MgSO4 as a neuroprotective agent with very 
heterogeneous results so that an accurate clinical recommenda-
tion can be given [77]. 

FUTURE PERSPECTIVES 

Studies on the description of Mg in the physiology of the central 
nervous system, as well as its therapeutic utility in neurocritical 
care, are almost nonexistent at present. It is necessary to come 
up with new lines of research aimed at exploring the effect of 
Mg in central nervous system tumors, acquired metabolic disor-
ders, neurogenetic diseases, neuronutrition, neurorehabilitation, 
and infectious diseases. Being an affordable mineral, it is postu-
lated as a therapeutic option applicable in low-level healthcare 
contexts for the stabilization of neurocritical patients while they 
are being evaluated by a specialized department. 

CONCLUSIONS 

In a review of the different neuropathological conditions, a direct 
relationship between the physiological mechanisms of MgSO4 

and multiple pathophysiological phenomena can be observed. 
Therefore, current evidence allows us to observe that MgSO4 can 
be an important part of the treatment of this type of pathology. 
Even so, in certain situations, for greater acceptance of its use, it is 
necessary to design studies of better quality to optimize the thera-
peutic objectives and, in this way, be able to obtain standardized 
schemes in the future for better results in its implementation. 
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